Share Email Print

Proceedings Paper

Uncooled thermal imaging at Texas Instruments
Author(s): Charles M. Hanson; Howard R. Beratan; Robert A. Owen; Mac Corbin; S. McKenney
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Texas Instruments has developed a new thermal imaging technology based upon focal plane arrays (FPAs) using the pyroelectric effect in ceramic barium-strontium titanate (BST). These devices operate near the paraelectric-ferroelectric phase transition, which, for the selected composition of BST, is near room temperature. The detector elements operate in the voltage mode with a bias voltage applied to maintain and optimize the pyroelectric effect near the phase transition. The BST array attaches via bump-bonding to a CMOS readout circuit that filters, buffers and multiplexes the output signals. These FPAs have facilitated the development of a system technology capable of satisfying a wide variety of applications, including surveillance devices, weapons sights, missile seekers and driver's aids. Resulting systems are performance-competitive with scanned FLIRs in these applications, and they are smaller in size, lighter in weight, and require less power than scanned FLIRs. Simplicity and compactness of the system designs will result in production costs competitive with image intensification devices.

Paper Details

Date Published: 10 December 1992
PDF: 10 pages
Proc. SPIE 1735, Infrared Detectors: State of the Art, (10 December 1992); doi: 10.1117/12.138624
Show Author Affiliations
Charles M. Hanson, Texas Instruments Inc. (United States)
Howard R. Beratan, Texas Instruments Inc. (United States)
Robert A. Owen, Texas Instruments Inc. (United States)
Mac Corbin, Texas Instruments Inc. (United States)
S. McKenney, Texas Instruments Inc. (United States)

Published in SPIE Proceedings Vol. 1735:
Infrared Detectors: State of the Art
Wagih H. Makky, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?