
Proceedings Paper
Development of microstrip gas chamber and application to imaging gamma-ray detectorFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We have developed a microstrip gas chamber (MSGC) by using multi-chip technology which enables high-density assembly of bare LSI chips on a silicon board. Our MSGC was operated steadily with approximately 103 gain more than one week. An energy resolution of 15% (FWHM) for 5.9 keV x ray of 55Fe was obtained. With a very thin polyimide substrate of 16 micrometers thickness, two interesting phenomena were observed; one is a strong dependence of gains on the back plane potential, and the other is little time variation of gains. A new type of MSGC with a guarding mask of a thin polyimide layer on the cathode edges has been examined to reduce incidental electrical discharges between anode and cathode strips. Furthermore, a new approach to reduce the resistivity of the substrate has been examined. By these approaches, the stability of the high gain operation of approximately 104 has been drastically improved. In addition, we discuss the possibility of the application of MSGC to the coded mask x-ray imaging detector for astrophysics.
Paper Details
Date Published: 22 December 1992
PDF: 10 pages
Proc. SPIE 1734, Gamma-Ray Detectors, (22 December 1992); doi: 10.1117/12.138606
Published in SPIE Proceedings Vol. 1734:
Gamma-Ray Detectors
Elena Aprile, Editor(s)
PDF: 10 pages
Proc. SPIE 1734, Gamma-Ray Detectors, (22 December 1992); doi: 10.1117/12.138606
Show Author Affiliations
Toru Tanimori, Tokyo Institute of Technology (Japan)
S. Minami, Tokyo Institute of Technology (Japan)
T. Nagae, Univ. of Tokyo (Japan)
S. Minami, Tokyo Institute of Technology (Japan)
T. Nagae, Univ. of Tokyo (Japan)
Published in SPIE Proceedings Vol. 1734:
Gamma-Ray Detectors
Elena Aprile, Editor(s)
© SPIE. Terms of Use
