Share Email Print

Proceedings Paper

All-digital 1.2-Gbit/s real-time HDTV VTR
Author(s): Laurence J. Thorpe; T. Yoshinaka
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In 1984 the first real-time HDTV video tape recorder was introduced. The HDV-1000 was an analog VTR using one inch metal oxide tape and standard SMPTE open reels. It utilized basic Type-C recording principles although also incorporating a considerably higher FM carrier frequency, twice the deviation, and slightly more preemphasis, - all to achieve a 10 MHz baseband video recording bandwidth capability. Four such component analog recording channels were utilized in parallel to achieve a total recording capability of 40 MHz - made up of 20 MHz for the green video signal (or Luminance Y) and 10 MHz each for the red and blue signals (or R-Y and B-Y components in the case of Y, R-Y, B-Y recording). Almost 150 of these machines supported the early pioneering years of HDTV development - worldwide - over the period 1984 to the late 1980's. The HDTV video signal format to which this VTR was designed was based upon the preliminary 1 125/60/16:9/2: 1 system - having specified system bandwiths of 20 MHz for Luminance Y, and 7.0MHz R-Y, and 5.5 MHz B-Y. The HDV-1000 proved to be a remarkably robust, reliable HD VTR workhorse and it early and firmly established the viability of reliable RD real-time image capture. Nevertheless, it's technical shortcomings were soon exposed by a creative and demanding international program production community. The limitations of two channels of analog audio recording, and about four generations of liD video recording in post-production were inconsistent with the needs of high-end program production. The 45 db signal to noise limitation also imposed a boundary to the quality of the HDTV tape to 35 mm film transfers being made by both Electron Beam and Laser Recording techniques. The HDV-1000 had, however, pushed the state of the art in analog FM recording to the boundary. Head and tape technologies were not expected to advance sufficiently to warrant a new generation in analog recording design. Attention thus turned to digital recording techniques.

Paper Details

Date Published: 12 August 1992
PDF: 15 pages
Proc. SPIE 1656, High-Resolution Sensors and Hybrid Systems, (12 August 1992); doi: 10.1117/12.135898
Show Author Affiliations
Laurence J. Thorpe, Sony Corp. of America (United States)
T. Yoshinaka, Sony Corp. of America (United States)

Published in SPIE Proceedings Vol. 1656:
High-Resolution Sensors and Hybrid Systems
Morley M. Blouke; Winchyi Chang; Laurence J. Thorpe; Rajinder P. Khosla, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?