Share Email Print

Proceedings Paper

Adaptive control of nonlinear systems using multistage dynamic neural networks
Author(s): Madan M. Gupta; Dandina Hulikunta Rao
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper we present a new architecture of neuron, called the dynamic neural unit (DNU). The topology of the proposed neuronal model embodies delay elements, feedforward and feedback signals weighted by the synaptic weights and a time-varying nonlinear activation function, and is thus different from the conventionally and assumed architecture of neurons. The learning algorithm for the proposed neuronal structure and the corresponding implementation scheme are presented. A multi-stage dynamic neural network is developed using the DNU as the basic processing element. The performance evaluation of the dynamic neural network is presented for nonlinear dynamic systems under various situations. The capabilities of the proposed neural network model not only account for the learning and control actions emulating some of the biological control functions, but also provide a promising parallel-distributed intelligent control scheme for large-scale complex dynamic systems.

Paper Details

Date Published: 1 November 1992
PDF: 13 pages
Proc. SPIE 1826, Intelligent Robots and Computer Vision XI: Biological, Neural Net, and 3D Methods, (1 November 1992); doi: 10.1117/12.131593
Show Author Affiliations
Madan M. Gupta, Univ. of Saskatchewan (Canada)
Dandina Hulikunta Rao, Univ. of Saskatchewan (Canada)

Published in SPIE Proceedings Vol. 1826:
Intelligent Robots and Computer Vision XI: Biological, Neural Net, and 3D Methods
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?