Share Email Print

Proceedings Paper

Scheduling parallel implementations of partitioned orthogonal transformations
Author(s): Prashanth Kuchibhotla; Bhaskar D. Rao
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Orthogonal matrix transformations form an important part of matrix-based signal processing applications. Systolic arrays for computing these algorithms have been developed and the size of these arrays usually depends directly on the size of the problem. For large matrix sizes, implementing large numbers of processors in hardware is not physically feasible. In this paper, we examine two popular orthogonal transformations, Givens rotations and householder transformations (HT), from the viewpoint of realizing a fixed-size parallel processor array that can handle large data matrices. An efficient scheduling procedure is used to compute the HT on a systolic type array, its performance is compared with that of an array designed for computing the Givens method. An important conclusion resulting from the comparison is that the performance of the HT array is superior to that for the Givens method when the matrices are larger compared to the array size.

Paper Details

Date Published: 30 November 1992
PDF: 12 pages
Proc. SPIE 1770, Advanced Signal Processing Algorithms, Architectures, and Implementations III, (30 November 1992); doi: 10.1117/12.130922
Show Author Affiliations
Prashanth Kuchibhotla, Univ. of California/San Diego (United States)
Bhaskar D. Rao, Univ. of California/San Diego (United States)

Published in SPIE Proceedings Vol. 1770:
Advanced Signal Processing Algorithms, Architectures, and Implementations III
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?