Share Email Print

Proceedings Paper

Neural network for improving the performance of nearest neighbor classifiers
Author(s): Hong Yan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In a nearest neighbor classifier, an input sample is assigned to the class of the nearest prototype. The decision rule is simple and robust. However, it is computationally expensive in terms of memory space and computer time to implement a nearest neighbor classifier if each training sample is stored as a prototype and used to compare with every testing sample. The performance of the classifier is degraded if only a small number of training samples are used as prototypes. An algorithm is presented in this paper for modifying the prototypes so that the classification rate can be increased. This algorithm makes use of a two-layer perceptron with one second order input. The perceptron is trained and mapped back to a new nearest neighbor classifier. It is shown that the new classifier with only a small number of prototypes can even perform better than the classifier that uses all training samples as prototypes.

Paper Details

Date Published: 16 December 1992
PDF: 9 pages
Proc. SPIE 1766, Neural and Stochastic Methods in Image and Signal Processing, (16 December 1992);
Show Author Affiliations
Hong Yan, Univ. of Sydney (Hong Kong)

Published in SPIE Proceedings Vol. 1766:
Neural and Stochastic Methods in Image and Signal Processing
Su-Shing Chen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?