Share Email Print

Proceedings Paper • Open Access

Magnetic resonance imaging using chemical exchange saturation transfer
Author(s): Jaeseok Park

Paper Abstract

Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications

Paper Details

Date Published: 24 October 2012
PDF: 6 pages
Proc. SPIE 8548, Nanosystems in Engineering and Medicine, 854846 (24 October 2012); doi: 10.1117/12.1000016
Show Author Affiliations
Jaeseok Park, Korea Univ. (Korea, Republic of)

Published in SPIE Proceedings Vol. 8548:
Nanosystems in Engineering and Medicine
Sang H. Choi; Jin-Ho Choy; Uhn Lee M.D.; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?