
Spie Press Book
Electro-Optical Imaging System Performance, Fifth EditionThis item is not currently sold.
Book Description
Recently updated to 5th Edition, this reference contains all of the material you'll need to design, analyze, and evaluate the performance of imaging systems, and is written for those conversant in target characterization, atmospheric effects, optics, detectors, electronics, displays, or human perception of image quality. Although emphasis is placed on infrared systems, the principles apply to all imaging systems operating in the visible region of the spectrum. This 5th Edition is updated to reflect the most current available material, providing more detail on system performance effects, turbulence, the NEDT, as well as an extensive list of current target discrimination levels.
Copublished with JCD Publishing.
Book Details
Date Published: 31 December 2008
Pages: 538
Volume: PM187
Pages: 538
Volume: PM187
Table of Contents
SHOW Table of Contents |
HIDE Table of Contents
Table of Contents
- Symbols and Acronyms
- 1 Introduction
- 1.1 Imaging system nomenclature
- 1.2 System modeling
- 1.3 Sensitivity and resolution limits
- 1.4 Infrared imaging systems
- 1.5 Infrared imaging system modeling
- 1.6 Model inputs
- 1.7 References
- 2 IR Imaging System Evolution
- 2.1 Optics
- 2.2 Scanners
- 2.3 Detectors and coolers
- 2.3.1 Detector classification
- 2.3.2 Specific detectors
- 2.3.3 Detector operation
- 2.4 Specific systems
- 2.4.1 Line scanners
- 2.4.2 Common module systems
- 2.4.3 EOMUX systems
- 2.4.4 EMUX systems
- 2.4.5 Second-generation systems
- 2.4.6 Staring array systems
- 2.4.7 Third-generation systems
- 2.5 Field of view
- 2.5.1 Fill factor
- 2.5.2 Staring arrays
- 2.5.3 Scanning arrays
- 2.6 References
- 3 Radiometry
- 3.1 Radiative transfer
- 3.2 Planck's blackbody law
- 3.3 Camera formula
- 3.3.1 Scanning arrays
- 3.3.2 Staring arrays
- 3.4 Point source
- 3.5 Photometry
- 3.6 Normalization
- 3.7 References
- 4 MTF Theory
- 4.1 Windows and filters
- 4.2 Spatial frequency
- 4.3 Linear filter theory
- 4.3.1 The EO system as a linear system
- 4.3.2 Cascading MTFs
- 4.4 Superposition applied to optical systems
- 4.5 Phase shifts
- 4.6 References
- 5 Common Module Systems
- 5.1 Optics OTF
- 5.1.1 Diffraction-limited OTF
- 5.1.2 Central obscuration
- 5.1.3 Non-circular apertures
- 5.1.4 Anamorphic optics
- 5.1.5 Aberrations
- 5.1.6 Defocused optics
- 5.2 Detectors
- 5.3 Motion
- 5.3.1 Linear motion
- 5.3.2 Sinusoidal motion
- 5.3.3 Random motion (jitter)
- 5.3.4 Nonlinear scan mirror movement
- 5.3.5 Low-frequency motion
- 5.4 Electronic MTF
- 5.4.1 Conversion: Electrical frequency to spatial frequency
- 5.4.2 Detector time constant
- 5.4.3 Amplifiers
- 5.4.4 Electrical filters
- 5.5 LEDs
- 5.6 Visual optics
- 5.7 Eye response
- 5.7.1 Conversion: Eye spatial frequency to spatial frequency
- 5.7.2 Eye MTF
- 5.7.3 Eye contrast threshold function (CTF)
- 5.8 Optical zoom
- 5.9 System design example: Random motion
- 5.10 References
- 6 EOMUX Systems
- 6.1 Vidicon
- 6.1.1 Conversion: Vidicon lines to spatial frequency
- 6.1.2 Vidicon MTF
- 6.2 Video amplifiers and filters
- 6.2.1 Conversion: Video frequency to spatial frequency
- 6.2.2 Boost circuitry
- 6.2.3 Video amplifiers
- 6.3 CRT monitors
- 6.4 References
- 7 EMUX Systems
- 7.1 Detector
- 7.1.1 TDI
- 7.1.2 SPRITE detector
- 7.1.3 Uncooled detectors
- 7.2 Conversion: Sampling frequency to spatial frequency
- 7.3 Conversion: Video sampling frequency to spatial frequency
- 7.4 Digital to analog data
- 7.4.1 Sample-and-hold
- 7.4.2 Post-reconstruction filter
- 7.5 References
- 8 Staring Array Systems
- 8.1 Transfer efficiency
- 8.2 Flat panel arrays
- 9 Line Scanners
- 9.1 Rectangular aperture
- 9.1.1 Diffraction-limited OTF
- 9.1.2 Defocus OTF
- 9.1.3 Ground coverage
- 9.2 Scanner
- 9.3 Motion
- 9.4 Electronic MTF
- 9.5 AN/AAD-5 CRT MTF
- 9.6 AN/AAD-5 film
- 9.6.1 Conversion: Film response to spatial frequency
- 9.6.2 Film MTF
- 9.7 References
- 10 Two-Dimensional MTF
- 10.1 Optics
- 10.2 Motion
- 10.2.1 Linear motion
- 10.2.2 Sinusoidal motion
- 10.2.3 Random motion
- 10.3 Detector
- 10.4 Electronics
- 10.5 Digital processing
- 10.6 Visual optics
- 10.7 Vidicon
- 10.8 Displays
- 10.9 The eye
- 10.7 References
- 11 Sampling
- 11.1 Sampling theory
- 11.2 Horizontal sampling frequency
- 11.2.1 Scanning systems
- 11.2.2 Staring arrays
- 11.3 Vertical sampling frequency
- 11.3.1 Scanning systems
- 11.3.2 Staring systems
- 11.4 Reconstruction
- 11.4.1 CRT monitor
- 11.4.2 Flat-panel display
- 11.5 Fλ/d
- 11.6 Microscan
- 11.7 Super-resolution reconstruction
- 11.8 Sample-scene phase
- 11.9 Spurious response
- 11.9.1 Schade's approach
- 11.9.2 MTF squeeze
- 11.9.3 Resolved cycle contraction
- 11.10 References
- 12 Imaging Processing
- 12.1 z-transform
- 12.2 Digital filters
- 12.2.1 Boost filter
- 12.2.2 Averaging filter
- 12.3 Electronic zoom (interpolation)
- 12.3.1 Ideal interpolator
- 12.3.2 Lanczos interpolator
- 12.3.3 Pixel replication
- 12.3.4 Linear interpolation
- 12.3.5 Bilinear interpolation
- 12.3.6 Image quality
- 12.4 Line-to-line interpolation
- 12.5 Noise reduction algorithms
- 12.6 Image restoration
- 12.7 References
- 13 Resolution
- 13.1 Analog metrics
- 13.2 NIIRS
- 13.3 Sampled data systems
- 13.4 Schade's equivalent resolution
- 13.4.1 Analog systems
- 13.4.2 Sampled data systems
- 13.5 References
- 14 Image Quality
- 14.1 Mathematical metrics
- 14.2 MTF
- 14.3 Perceived resolution
- 14.4 Subjective quality factor
- 14.5 MTFA
- 14.6 Square-root integral
- 14.7 Targeting task performance
- 14.8 Resolution versus perceivalbe detail
- 14.9 References
- 15 Atmospheric Transmittance
- 15.1 Atmospheric constituents
- 15.1.1 Water vapor
- 15.1.2 Aerosols
- 15.2 Visibility
- 15.2.1 Meteorological range
- 15.2.2 Contrast transmittance
- 15.3 LOWTRAN, MODTRAN, and HITRAN
- 15.4 Spectrally averaged atmospheric transmittance
- 15.5 Weather conditions
- 15.5.1 Average conditions
- 15.5.2 Probability of occurrence
- 15.5.3 Naval model
- 15.5.4 Land-based systems, horizontal path
- 15.5.5 Land-based systems, slant path
- 15.6 MWIR versus LWIR
- 15.7 Sun glints
- 15.8 Solar scattering
- 15.9 Battlefield obscurants
- 15.10 References
- 16 Atmospheric MTF
- 16.1 CN2
- 16.2 Fried's coherence diameter
- 16.2.1 Horizontal path length
- 16.2.2 Slant path
- 16.3 Turbulence MTF
- 16.4 Aerosol MTF
- 16.5 References
- 17 Target Signatures
- 17.1 What is ΔT?
- 17.2 300K models
- 17.3 Area-weighted ΔT
- 17.4 Thermal structure metrics
- 17.5 Diurnal variations
- 17.5.1 Solar heating
- 17.5.2 ΔT cumulative probability
- 17.5.3 Environmental modifiers
- 17.6 Active targets
- 17.6.1 Fuel combustion
- 17.6.2 Frictional heat
- 17.7 Typical ΔTs
- 17.8 Target signature modeling
- 17.9 Sky background
- 17.10 Target signatures in the visible
- 17.11 Path radiance
- 17.11.1 Infrared path radiance
- 17.11.2 Visible path radiance
- 17.12 References
- 18 Sensitivity and Noise
- 18.1 Noise equivalent bandwidth
- 18.2 Scanning arrays (analog system)
- 18.2.1 Photon noise
- 18.2.2 Johnson noise
- 18.2.3 Amplifier noise
- 18.3 Staring arrays
- 18.3.1 Shot noise
- 18.3.2 Dark current
- 18.3.3 Fixed pattern noise
- 18.3.4 Multiplexer noise
- 18.3.5 Quantization noise
- 18.4 Detector responsitivity
- 18.4.1 Classical semiconductors
- 18.4.2 Novel semiconductors
- 18.4.3 Thermal detectors
- 18.5 Specific detectivity
- 18.5.1 BLIP
- 18.5.2 Johnson noise limited
- 18.5.3 D*BB to D*p conversion
- 18.5.4 D*300
- 18.5.5 Focal ratio
- 18.6 System SNR
- 18.7 NEDT
- 18.7.1 Scanning systems
- 18.7.2 Staring arrays
- 18.7.3 Uncooled systems
- 18.7.4 Background temperature
- 18.7.5 Variable integration time
- 18.8 Real systems
- 18.8.1 Three-dimensional noise model
- 18.8.2 Fixed pattern noise
- 18.8.3 Noise figure
- 18.8.4 Non-scene photons
- 18.9 Signal-to-noise optimization
- 18.10 300K models
- 18.11 NEI
- 18.12 References
- 19 System Performance Models
- 19.1 1975 NVL model
- 19.2 FLIR92
- 19.2.1 FLIR92 theory
- 19.2.2 Moderate aspect ratio targets
- 19.2.3 SNRTH and tE
- 19.2.4 Frame integration
- 19.2.5 Head movement
- 19.2.6 Embedded 1975 NVL model
- 19.2.7 Two-dimensional MRT
- 19.2.8 The brick wall
- 19.3 NVTherm Sept 2002
- 19.4 NVThermIP
- 19.5 TRM3
- 19.7 Model comparisons
- 19.8 References
- 20 Target Discrimination
- 20.1 One-dimensional target acquisition
- 20.1.1 Johnson criteria
- 20.1.2 Extended discrimination
- 20.1.3 Target transfer probability function
- 20.2 Two-dimensional discrimination
- 20.2.1 Discrimination requirements
- 20.2.2 Two-dimensional TTPF
- 20.2.3 Targeting task performance
- 20.3 Current definitions
- 20.4 Current N50/V50 values
- 20.5 Hot spot detection
- 20.6 Clutter
- 20.7 References
- 21 Range Predictions
- 20.1 ACQUIRE
- 21.1.1 Range prediction methodology
- 21.1.2 Range performance probability
- 21.1.3 Two fields of view
- 21.2 Trade-off analyses
- 21.2.1 Line-of-sight stabilization
- 21.2.2 Resolution versus sensitivity
- 21.2.3 STADIUM FLIR
- 21.3 NVThermIP
- 21.3.1 Viewing distance
- 21.3.2 Electric zoom
- 21.3.3 Scene contrast
- 21.3.4 Frame averaging
- 21.3.5 Image enhancement
- 21.3.6 Super-resolution reconstruction
- 21.4 Simplified range predictions
- 21.4.1 Trade-off analyses
- 21.4.2 Detector-limited systems
- 21.5 Pixels versus cycles
- 21.6 Pixels on target
- 21.7 300K models
- 21.8 Search
- 21.9 GIQE/NIIRS
- 21.10 References
- Appendix 1 (Focal ratio)
- Appendix 2 (CosineNθ)
- Appendix 3 (Central limit theorem)
- Index
- Appendix 2 (CosineNθ)
© SPIE. Terms of Use
