Share Email Print

Spie Press Book

Applied Prismatic and Reflective Optics
Author(s): Dennis F. Vanderwerf
Format Member Price Non-Member Price

Book Description

From the early ground and polished prism facets of glass lighthouse Fresnel lenses to modern microreplicated flexible Fresnel lenses for solar concentrators, new applications of prismatic optical components for light control are constantly being developed. In addition, innovations utilizing single and compound prismatic and reflective optical components are emerging in the fields of metrology, polarization control, projection systems, illumination, and display lighting, among others. State-of-the-art multilayer optical coatings have enabled novel prism and reflector geometries to be developed for specific functions. The techniques and examples presented in this book should provide a good background to analyze, evaluate, and understand prismatic and reflector applications described in the literature. The material in this book may inspire readers themselves to create novel and useful devices utilizing prismatic and reflective optical components.

Book Details

Date Published: 20 July 2010
Pages: 310
ISBN: 9780819483324
Volume: PM200

Table of Contents
SHOW Table of Contents | HIDE Table of Contents
Chapter 1 Introduction and Background
1.1 Snell's Law of Refraction
1.2 Optical Dielectric Materials
1.3 Fresnel Reflection at a Dielectric Surface
1.4 External Reflection at an Optical Surface
1.5 Internal Reflection at an Optical Surface
1.6 Reflection Phase Shifts at a Planar Interface
1.7 Antireflection and Reflection Coatings
1.8 Effective f /# of a Converging Light Beam
1.9 Refraction and Translation of Skew Rays at Planar Surfaces
1.10 Convergent Beam through a Tilted Plate
1.11 Reflection and Translation of Skew Rays at Planar Surfaces
1.12 Reflection Matrix
1.13 Orientation of Viewed Images through Prisms
1.14 Intersection Coordinate Matrix
1.15 Three-Mirror Beam-Displacing Prism
1.16 The Refraction Matrix
1.17 Four-Mirror Beam-Displacing Prism
1.18 90-deg Beam-Deviating Prism
Chapter 2 General Prisms and Reflectors
2.1 Equilateral Prism
2.2 Abbe Dispersing Prism
2.3 Pellin–Broca Dispersing Prism
2.4 Penta Prism
2.5 Right-Angle Prism
2.6 Porro Prism
2.7 Dove Prism
2.8 Brewster Laser-Dispersing Prism
2.9 Littrow Prism
2.10 Schmidt Prism
2.11 Pechan Prism
2.12 Schmidt–Pechan Prism
2.13 Cube-Corner Retroreflector
Chapter 3 Polarization Properties of Prisms and Reflectors
3.1 Prisms Producing Polarized Light
     3.1.1 Uniaxial double-refracting crystals
     3.1.2 Nicol polarizing prism
     3.1.3 Glan–Foucault polarizing prism
     3.1.4 Glan–Thompson polarizing prism
     3.1.5 Glan–Taylor polarizing prism
     3.1.6 Beam-displacing polarizing prism
     3.1.7 Wollaston polarizing prism
     3.1.8 Nomarski polarizing prism
     3.1.9 Rochon polarizing prism
     3.1.10 MacNeille polarizing beamsplitter cube
     3.1.11 Birefringent multilayer reflective polarizing film
     3.1.12 Polarizing beamsplitter elements using birefringent polarizing film
     3.1.13 Wire-grid polarizing beamsplitter
     3.1.14 Polarizing beamsplitter using frustrated total internal reflection
     3.1.15 Polarizing beamsplitter prism with common polarization output
3.2 Prisms Controlling the Polarization of Light
     3.2.1 Fresnel rhomb retarders
     3.2.2 Total-internal-reflecting cube-corner retarders
     3.2.3 Phase-coated total-internal-reflecting right-angle prism retarders
3.3 Polarization Preservation in Prisms and Reflectors
     3.3.1 Polarization-preserving total-internal-reflecting prisms
     3.3.2 Polarization-preserving two-piece reflective axicon
     3.3.3 Polarization-preserving total-internal-reflecting cubecorner prism
     3.3.4 Stokes parameters
     3.3.5 Depolarizing cube-corner prism
3.4 Plane of Polarization Rotation Using Total-Internal-Reflecting Prisms and Reflectors
     3.4.1 90-deg polarization rotating prism with coaxial beam output
     3.4.2 90-deg polarization-rotating prism with retroreflected beam output
     3.4.3 90-deg polarization rotating prism with orthogonal beam output
     3.4.4 Double Fresnel rhomb polarization rotator with collinear beam output
     3.4.5 Four-mirror 90-deg polarization rotator with collinear beam output
Chapter 4 Specialized Prism Types
4.1 Dispersing Prisms
     4.1.1 Refracting direct-vision prisms
     4.1.2 Reflective dispersing prisms with collinear output
     4.1.3 Direct-vision prisms with wavelength tuning
     4.1.4 Total-internal-reflecting dispersing prism
     4.1.5 Multiprism negative dispersion
4.2 Refracting Achromatic Compound Prisms
4.3 Anamorphic Prisms for Beam Compression and Expansion
     4.3.1 Beam expander with orthogonal output
     4.3.2 Beam compressor with coaxial output
     4.3.3 Beam expander with collinear output
     4.3.4 Wedge prism beam compressor/expander
     4.3.5 Anamorphic prism pair with coaxial output
     4.3.6 Multiprism dispersive compressors and expanders
4.4 Achromatic Anamorphic Prisms
     4.4.1 Air-spaced prism pair with coaxial output
     4.4.2 Compound prisms with orthogonal output
     4.4.3 Refracting/total-internal-reflecting prism pair with orthogonal output
4.5 A Misalignment-Tolerant Beam-Splitting Prism
4.6 Axicon Prisms
4.7 A Variable Phase-Shifting Prism
Chapter 5 Prism and Mirror System Design, Analysis, and Fabrication
5.1 Prism Design and Analysis
     5.1.1 Sectional element approach for prism design
     5.1.2 Right-angle prism sections
     5.1.3 Experiential design of multiple reflectors
     5.1.4 Matrix methods for design and analysis
     5.1.5 Evolutionary prism design using a genetic algorithm
     5.1.6 A three-mirror tabletop lectern projector
     5.1.7 Prism aberrations
5.2 Prism Quality Specifications
     5.2.1 Surface quality and flatness specifications
     5.2.2 Optical material properties
     5.2.3 Specifying angular accuracies
     5.2.4 Tolerancing a Dove prism
     5.2.5 Techniques for prism angle measurement
5.3 Survey of Fabrication Methods
     5.3.1 Ground and polished glass prisms
     5.3.2 Fabrication of a Penta prism by measurement of the angular deviation error
     5.3.3 Molded, pressed, and fire-polished prisms
     5.3.4 Fabrication of large prisms
5.4 Some prism-mounting methods
Chapter 6 A Selection of Prism Applications
6.1 Laser Scanning
     6.1.1 Reflective scanning prisms
     6.1.2 Refractive prism-beam scanning and steering
 Single-wedge prism
 Wedge prism pairs
 LADAR guidance system using prism pairs
 Rotating square-plate linear scanner
6.2 Interferometry and Spectroscopy
     6.2.1 Laser interferometer with prism polarization rotator
     6.2.2 Polarization interferometer using aWollaston prism
     6.2.3 Multipass optical cell for laser interferometer
     6.2.4 Nomarski polarized-light interferometer
     6.2.5 Aplanatic prism spectrograph
6.3 Prismatic Optical Devices
     6.3.1 Prism switch for fiber-optic connections
     6.3.2 Laser gyro readouts
     6.3.3 Reflecting wedge prism for optical reader
     6.3.4 Total-internal-reflecting touch switch using a Dove prism
     6.3.5 Inspection device for window surfaces
6.4 Viewing, Display, and Illumination Systems
     6.4.1 Direct-view system for a microdisplay
     6.4.2 Binocular surgical loupe with flare reduction
     6.4.3 Inversion prism for range finders
     6.4.4 Prism transforming transmitted intensity profile
Chapter 7 Projection Displays
7.1 Color-Separating and Color-Combining Prisms
     7.1.1 Three-channel Philips RGB separating prism
     7.1.2 Philips prisms in reflective LCD projection displays
     7.1.3 Crossed dichroic x-cube prisms for projection displays
     7.1.4 Prisms for digital light processing projection
     7.1.5 Other types of color-separating prisms for projectors
7.2 Polarizing Beamsplitters for Projection Displays
     7.2.1 MacNeille polarizing beamsplitters
     7.2.2 Cartesian polarizing beamsplitters
     7.2.3 Wire-grid polarizing beamsplitters in projection displays
7.3 Illuminators for Projection Displays
     7.3.1 Hollow tunnel integrators
     7.3.2 Solid light pipes
     7.3.3 Effect of light-pipe cross section on uniformity
     7.3.4 Solid microprismatic light homogenizer
     7.3.5 Tapered-tunnel illuminator for projection displays
Chapter 8 Microprismatic Arrays
8.1 Roof Prism Linear Array
8.2 Square Prismatic Hollow Light Guide
8.3 Circular Prismatic Hollow Light Guide
8.4 Luminaire with Contoured Prismatic Extractor
8.5 Elliptical Light Guide with Directional Output
8.6 Prismatic Backlighting Devices
8.7 Brightness Enhancement for Liquid Crystal Displays
8.8 Polarizing Prismatic Sheet
8.9 Prismatic Reflective Polarizer Film
8.10 LCD Backlights Producing Polarized Light
8.11 Prismatic Array Beamsplitters and Combiners
8.12 Polarization Converters Using Prismatic Arrays
8.13 Cube-Corner Arrays
8.14 Dove Prism Arrays
Chapter 9 Fresnel Lenses
9.1 Basic Refractive Fresnel Lens Design
     9.1.1 Design example: Fresnel lens collimator/searchlight
9.2 High-Transmission Fresnel Lens Doublet
9.3 Reflective Fresnel Lenses
     9.3.1 First-surface reflector design parameters
     9.3.2 Second-surface reflector design parameters
9.4 Refractive Planar Circular Fresnel Lens Solar Applications
     9.4.1 Multilens solar furnace
     9.4.2 Multilens-array solar simulator
9.5 Refractive Meniscus Fresnel Lenses
9.6 Reflective Planar Linear-Focus Solar Concentrators
     9.6.1 Tilted linear-focus reflective solar concentrator
     9.6.2 Linear-focus concentrator using a linear Fresnel lens and a crossed linear total-internal-reflecting array
     9.6.3 Planar reflective spot-focus concentrator using orthogonal refractive and reflective linear Fresnel lenses
9.7 Curved Linear Fresnel Lens Solar Concentrators
9.8 Flexible Fresnel Lens Solar Concentrators
     9.8.1 Sectional planar solar concentrator
     9.8.2 Inflatable curved solar concentrators
9.9 Fresnel Lenses Using Total Internal Reflection
     9.9.1 Low-profile overhead projector
     9.9.2 Curved catadioptric Fresnel lenses
     9.9.3 Photovoltaic solar concentrator using total internal reflection
9.10 Fresnel Lenses for Rear-Projection Screens
9.11 Fresnel Lens Manufacture
9.12 Achromatic Fresnel Lenses
     9.12.1 Combination of high- and low-dispersion materials
     9.12.2 Achromatic catadioptric Fresnel lenses
     9.12.3 Dispersion-compensated achromatic Fresnel lens
     9.12.4 Design example: achromatic dual-grooved Fresnel lens for overhead projector
     9.12.5 Achromatic zone plate using a Fresnel lens
9.13 Diffraction and Coherence Effects in Fresnel Lenses
     9.13.1 Diffraction compensation in a Fresnel lens reflector
     9.13.2 Phase-optimized Fresnel lens
     9.13.3 Phase-optimized Fresnel lens for use in an IR intrusion detector
9.14 Design of a Fresnel Lens Illuminator Using Genetic Algorithms

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?