Proceedings Volume 9567

Organic Photovoltaics XVI

cover
Proceedings Volume 9567

Organic Photovoltaics XVI

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 27 October 2015
Contents: 12 Sessions, 15 Papers, 27 Presentations
Conference: SPIE Organic Photonics + Electronics 2015
Volume Number: 9567

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9567
  • Organic Photovoltaics Keynote Session
  • Solution Processed Perovskite Solar Cells
  • Photophysics of Organic Semiconductors with Photovoltaic Applications
  • Applications of Nanophotonics
  • Perovskite Solar Cells: Joint Session with Conferences 9549 and 9567
  • Charge Transfer States and Processes
  • Advances in Organic Solar Cells and Detectors
  • Morphology and Processing of Organic Solar Cells
  • Lifetime and Stability Issues for Organic and Perovskite Solar Cells
  • Organic and Electrode Interfaces in Organic Solar Cells
  • Poster Session
Front Matter: Volume 9567
icon_mobile_dropdown
Front Matter: Volume 9567
This PDF file contains the front matter associated with SPIE Proceedings Volume 9567, including the Title Page, Copyright information, Table of Contents, Authors, and Conference Committee listing.
Organic Photovoltaics Keynote Session
icon_mobile_dropdown
Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted solar cells (Presentation Recording)
Hyunbok Lee, Egle Puodziukynaite, Todd Emrick, et al.
We demonstrate the use of polymeric zwitterions, namely, poly(sulfobetaine methacrylate) (PSBMA), as solution-processable work function reducers for inverted organic electronic devices. A notable feature of PSBMA is orthogonal solubility relative to solvents typically employed in the processing of organic semiconductors. A strong permanent dipole moment on the sulfobetaine moiety was calculated by density functional theory. PSBMA interlayers reduced the work function of a broad range of electrodes [indium tin oxide (ITO), Au, Ag, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), Cu, Al, and even graphene] by over 1 eV. By employing an ultrathin interlayer of PSBMA, one can reduce the electron injection barrier between ITO and C70 by 0.67 eV. As a result, the device performance of OPVs with PSBMA interlayers are significantly improved, and enhanced electron injection is demonstrated in electron-only devices with ITO, PEDOT:PSS and graphene electrodes. This work makes available a new class of dipole-rich, counterion-free, pH insensitive interlayers for use as strong work function reducers for any electrode.
Aggregation and morphology control enables polymer solar cells with efficiencies near 11.5% (Presentation Recording)
Current high-efficiency (>9.0%) PSCs are restricted to materials combinations that are based on limited donor polymers and only one specific fullerene acceptor, PC71BM. Furthermore, best-efficiency PSCs are mostly based on relatively thin (100 nm) active layers. Here we first report multiple cases of high-performance thick-film (300 nm) PSCs (efficiencies up to 10.8%, fill factors up to 77%) based on conventional PCBM and many non-PCBM fullerenes. Our simple aggregation control and materials design rules allowed us to develop, within a short time, three new donor polymer, six fullerenes (including C60-based fullerenes), and over ten polymer:fullerene combinations, all of which yielded higher efficiency than previous state of art devices (~9.5%). The common structural feature of the three new donor polymers, the 2-octyldodecyl (2OD) alkyl chains sitting on quaterthiophene, causes a temperature-dependent aggregation behavior that allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:fullerene morphology (containing highly crystalline, preferentially orientated, yet small polymer domains) that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of fullerenes. The 2OD structural motif is then further applied to several other polymer backbones and produces three additional polymers with efficiencies between 10-11.5%. Our best efficiency (11.5%) is achieved via the combination of new structural designs, interface and optical engineering and optimizations on the solvents and additives of the polymer:fullerene solution.
Solution Processed Perovskite Solar Cells
icon_mobile_dropdown
Fabricating thin-film photovoltaic devices using ultra-sonic spray-coating (Presentation Recording)
The scale-up of thin-film electronic devices requires a manufacture tool set that is capable of fabricating thin films at high speed over large areas. One such technique capable of such a task is ultra-sonic spray coating. Here, a target solution is fed onto a vibrating tip that breaks the solution up into very fine droplets, with such droplets being carried to a surface by a gas stream. Such ultra-sonic coating processes are already widely used in Electronics, Medical and Displays industries to create films having excellent smoothness and homogeneity. In this talk, I describe the use of ultra-sonic spray-coating to deposit a range of materials for thin-film optoelectronics. As our spray-coating system operates in air, it was first necessary to explore the relative sensitivity of various conjugated polymer / fullerene blends to an air-based process route. It is found that carbazole based co-polymers are particularly stable, and can be processed in air (by spin-coating) into organic photovoltaic devices (OPV) without any apparent loss in device efficiency. I then show that spray-coating can be used to deposit a range of semiconductor materials into smooth, thin-films, including PEDOT:PSS, MoOx (from a precursor) and a series of polymer:fullerene blends. Using such a technique, we are able to scale up an array of devices having an area of 7 cm2, and using a PBDTTT-EFT:PC70BM blend, obtain OPVs having a power conversion efficiency (PCE) of 8.7%. I then discuss spray-coating as a method to fabricate photovoltaic devices based on CH3NH3PbI(3-x)Clx perovskite films. Here, by optimization of deposition parameters, devices are created having a PCE of 11.1%.
Photophysics of Organic Semiconductors with Photovoltaic Applications
icon_mobile_dropdown
The effect of 2D-Langevin and trap-assisted recombination on the open circuit voltage in organic solar cells
Mathias Nyman, Oskar J. Sandberg, Ronald Österbacka
Using drift-diffusion simulations we have clarified the effect of 2-dimensional (2D) lamellar ordering on the device performance and, in particular, the open circuit voltage in donor-acceptor type organic solar cells. The simulations are performed both in systems where direct (band-to-band) recombination dominates and in systems where trap-assisted recombination dominates. Results show that lamellar ordering reduces both the amount of direct and trap-assisted recombination, which is beneficial for device performance. The effect is particularly prominent for small lamellar thicknesses (~ 1 nm). It is furthermore shown that in the case of s-shaped current-voltage characteristics due to electrostatic injection barriers the s-shape becomes less prominent for thinner lamellar thicknesses.
Exciton binding energy limitations in organic materials and potentials for improvements (Presentation Recording)
Stefan Kraner, Reinhard Scholz, Eric Müller, et al.
In current organic photovoltaic devices, the loss in energy caused by the inevitable charge transfer step leads to a low open circuit voltage, which is one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy below 25 meV, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley Queisser limit for inorganic solar cells. We determine the size of the excitons for different one-dimensional organic small molecules or polymers by electron energy loss spectroscopy (EELS) measurements and by DFT calculations. Using the measured dielectric constant and exciton extension, the exciton binding energy is calculated for the investigated molecules, leading to a lower limit of the exciton binding energy for ladder-type polymers. We discuss and propose potential ways to increase the ionic and electronic part of the dielectric function in order to further lower the limit of the exciton binding energy in organic materials. Furthermore, the influence of charge transfer states on the exciton size and its binding energy is calculated with DFT methods for the ladder-type polymer poly(benzimidazobenzophenanthroline) (BBL) in a dimer configuration.
Conditions for charge transport without recombination in low mobility organic solar cells and photodiodes (Presentation Recording)
Martin Stolterfoht, Ardalan Armin, Bronson Philippa, et al.
Organic semiconductors typically possess low charge carrier mobilities and Langevin-type recombination dynamics, which both negatively impact the performance of organic solar cells and photodetectors. Charge transport in organic solar cells is usually characterized by the mobility-lifetime product. Using newly developed transient and steady state photocurrent measurement techniques we show that the onset of efficiency limiting photocarrier recombination is determined by the charge that can be stored on the electrodes of the device. It is shown that significant photocarrier recombination can be avoided when the total charge inside the device, defined by the trapped, doping-induced and mobile charge carriers, is less than the electrode charge. Based upon this physics we propose the mobility-recombination coefficient product as an alternative and more convenient figure of merit to minimize the recombination losses. We validate the results in 3 different organic semiconductor-based light harvesting systems with very different charge transport properties. The findings allow the determination of the charge collection efficiency in fully operational devices. In turn, knowing the conditions under which non-geminate recombination is eliminated enables one to quantify the generation efficiency of free charge carriers. The results are relevant to a wide range of light harvesting systems, particularly those based upon disordered semiconductors, and require a rethink of the critical parameters for charge transport.
Applications of Nanophotonics
icon_mobile_dropdown
Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)
L. Jay Guo
This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, “Decorative power generating panels creating angle insensitive transmissive colors,” Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104, 231112, (2014); and “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater, 26, 6324–6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, “Colored, see-through perovskite solar cells employing an optical cavity,” Submitted, 2015
Nano-photonic organic solar cell architecture for advanced light management utilizing dual photonic crystals
Akshit Peer, Rana Biswas
Organic solar cells have rapidly increasing efficiencies, but typically absorb less than half of the incident solar spectrum. To increase broadband light absorption, we rigorously design experimentally realizable solar cell architectures based on dual photonic crystals. Our optimized architecture consists of a polymer microlens at the air-glass interface, coupled with a photonic-plasmonic crystal at the metal cathode. The microlens focuses light on the periodic nanostructure that generates strong light diffraction. Waveguiding modes and surface plasmon modes together enhance long wavelength absorption in P3HT-PCBM. The architecture has a period of 500 nm, with absorption and photocurrent enhancement of 49% and 58%, respectively.
Perovskite Solar Cells: Joint Session with Conferences 9549 and 9567
icon_mobile_dropdown
Hysteresis-free, stable and efficient perovskite solar cells achieved by vacuum-treated thermal annealing of CH3NH3PbI3
Fengxian Xie, Di Zhang, Wallace C. H. Choy
The lead halide-based perovskite solar cells have emerged as a promising candidate in photovoltaic applications. However, the precise control over the morphologiy of the perovskite films (minimizing pore formation) and enhanced stability and reproducibility of the devices remain challenging, even though both will be necessary for further advancements. Here we introduce vacuum-assisted thermal annealing as a means of controlling the composition and morphology of the CH3NH3PbI3 films formed from PbCl2 and CH3NH3I as precursors. We identify the critical role that the CH3NH3Cl generated as a byproduct during the pervoskite synthesis plays for the photovoltaic performance of the perovskite film. Removing this byproduct through vacuum-assisted thermal annealing we succeeded in producing pure, pore-free planar CH3NH3PbI3 films showing high conversion efficiency (PCE) reaching 14.5%). Removal of CH3NH3Cl strongly attenuate the photocurrent hysteresis.
Charge Transfer States and Processes
icon_mobile_dropdown
Charge generation in organic solar cell materials studied by terahertz spectroscopy
M. Scarongella, J. C. Brauer, J. D. Douglas, et al.
We have investigated the photophysics in neat films of conjugated polymer PBDTTPD and its blend with PCBM using terahertz time-domain spectroscopy. This material has very high efficiency when used in organic solar cells. We were able to identify a THz signature for bound excitons in neat PBDTTPD films, pointing to important delocalization in those excitons. Then, we investigated the nature and local mobility (orders of magnitude higher than bulk mobility) of charges in the PBDTTPPD:PCBM blend as a function of excitation wavelength, fluence and pump-probe time delay. At low pump fluence (no bimolecular recombination phenomena), we were able to observe prompt and delayed charge generation components, the latter originating from excitons created in neat polymer domains which, thanks to delocalization, could reach the PCBM interface and dissociate to charges on a time scale of 1 ps. The nature of the photogenerated charges did not change between 0.5 ps and 800 ps after photo-excitation, which indicated that the excitons split directly into relatively free charges on an ultrafast time scale.
On the relation between local and charge-transfer exciton binding energies in organic photovoltaic materials
Hilde D. de Gier, Ria Broer, Remco W. A. Havenith
In organic photovoltaic devices two types of excitons can be generated for which different binding energies can be defined: the binding energy of the local exciton generated immediately after light absorption on the polymer and the binding energy of the charge-transfer exciton generated through the electron transfer from polymer to PCBM. Lowering these two binding energies is expected to improve the efficiency of the devices. Using (time-dependent) density functional theory, we studied whether a relation exists between the two different binding energies. For a series of related co-monomers, we found that the local exciton binding energy on a monomer is not directly related to that of the chargetransfer exciton on a monomer-PCBM complex because the variation in exciton binding energy depends mainly on the variation in electron affinity, which does not affect in a direct way the charge-transfer exciton binding energy. Furthermore, for the studied co-monomers and their corresponding trimers, we provide detailed information on the amount of charge transfer upon excitation and on the charge transfer excitation length. This detailed study of the excitation process reveals that the thiophene unit that links the donor and acceptor fragments of the co-monomer actively participates in the charge transfer process.
Charge transfer and triplet states in OPV materials and devices (Presentation Recording)
Vladimir Dyakonov
Electron back transfer (EBT), potentially occurring after electron transfer from donor to acceptor may populate the lower lying donor or acceptor triplet state and serve as recombination channel.[1] Here we report on studies of charge transfer and triplet states in blends of highly efficient benzodithiophene PTB7 polymer in combination with the fullerene-derivative PC71BM using the spin sensitive optically detected magnetic resonance (ODMR) technique and compare the results with those obtained in P3HT (poly(3- hexylthiophene):PC61BM blends. Although PTB7:PC71BM absorbers yield much higher power conversion efficiencies in solar cells exceeding 7%, we found a significant increase of triplet exciton generation, which was absent in the P3HT based blends. We discuss this observation within the EBT scenario with the emphasis on the influence of morphology, fullerene load, HOMO/LUMO energy and presence of additives (DIO). Suppressing the EBT process by morphology and/or energetics of polymer and molecules is important to achieve the full potential of highly efficient OPV materials. [1] M. Liedtke, et al., JACS 133, 9088 (2011).
Charge transfer states as traps in organic solar cells (Presentation Recording)
Andreas Arndt, Marina Gerhard, Aina Quintilla, et al.
We investigate the NIR time-resolved photoluminescence of a series of P3HT:PC61BM solar cells with varying blend ratios after preferential excitation of the PC61BM and P3HT components respectively. Besides the rapid and diffusion-limited quenching of singlet excitons we resolve a weak emission feature in the near-infrared that our measurements confirm comes from interfacial charge-transfer (CT) states. This CT state emission becomes stronger for samples with an excess of PC61BM, and also after selective excitation of the PC61BM component. In this way, we show that these NIR time-resolved photoluminescence measurements provide an accurate method of observing subtle changes in the formation and dynamics of CT states at organic heterojunctions due to its high selectivity, and suggest that PC61BM excitons are more likely to lead to geminately recombining CT states than are the excitons created on P3HT. We also measure the temperature dependence of the transient NIR photoluminescence and find that while the intensity of the NIR emission is temperature dependent, its lifetime is not. This interesting observation suggests that the CT states we observe are formed through a precursor state which can either form separated charges or CT states, and that the relative yield of these two pools is temperature dependent. Furthermore, it indicates that charges within these relaxed CT states are trapped at the donor-acceptor interface and cannot contribute to free-charge generation via thermal activation anymore.
Charge-transfer absorption, emission, and the open-circuit voltage of organic solar cells (Presentation Recording)
Koen Vandewal
Electronic processes at the organic hetero-interface limit the photocurrent and photovoltage of organic solar cells. While devices with incident-photon-to-extracted-charge conversion yields of over 85%, and absorbed photon-to-extracted-charge conversion yields of 90-100% have been achieved, the difference between the optical gap of main absorber and open-circuit voltage (Voc) is much larger than for inorganic solar cells. The main improvements in the Voc of organic solar cells have so far been made by tailoring the donor-acceptor interfacial energetics, taking advantage of well-known principles of molecular design. Nevertheless, for most material systems we consistently find a large (>0.55 eV) difference between eVoc and the energy of the intermolecular charge transfer (CT) state. We present experimental evidence that this difference can be reduced by reducing the physical interfacial area available for free carrier recombination. We quantify this by analyzing the strength of the interfacial CT state absorption and emission signal at photon energies below the optical gap of the neat materials. We further discuss the influence of the measured electronic coupling, molecular reorganization and non-radiative recombination pathways on Voc. This work opens up unexplored possibilities for increasing the Voc of organic solar cells, bringing it closer to the optical gap of the main absorber.
Theory and assignment of intermolecular charge transfer states in squaraines and their impact on efficiency in bulk heterojunction solar cells (Presentation Recording)
Christopher J. Collison, Chenyu Zheng, Nicholas Hestand, et al.
Squaraines are targeted for organic photovoltaic devices because of their high extinction coefficients over a broad wavelength range from visible to near infra-red (NIR). Moreover, their side groups can be changed with profound effects upon their ability to crystallize, leading to improvements in charge mobility and exciton diffusion. The broadening in squaraine absorption is often qualitatively attributed to H- and J-aggregates based on the exciton model, proposed by Kasha. However, such assignment is misleading considering that spectral shifts can arise from sources other than excitonic coupling. Our group has shown that packing structure influences the rate of charge transfer; thus a complete and accurate reassessment of the excited states must be completed before the true charge transfer mechanism can be confirmed. In this work, we will show how squaraine H-aggregates can pack in complete vertical stacks or slipped vertical stacks depending upon sidegroups and processing conditions. Hence, we uncover the contribution of an intermolecular charge transfer (IMCT) state through essential states modeling validated by spectroscopic and X-Ray diffraction data. We further show external quantum efficiency data that describe the influence of the IMCT state on the efficiency of our devices. This comprehensive understanding of squaraine aggregates drives the development of more efficient organic photovoltaic devices, leading towards a prescription for derivatives that can be tailored for optimized exciton diffusion, charge transfer, higher mobilities and reduced recombination in small molecule OPV devices.
Advances in Organic Solar Cells and Detectors
icon_mobile_dropdown
Rational material, interface, and device engineering for high-performance polymer and perovskite solar cells (Presentation Recording)
The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.
High performance x-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current (Presentation Recording)
Abhishek Kumar, Date Moet, Jan Laurens van der Steen, et al.
High performance X-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current Abhishek Kumara, Date Moeta, Albert van Breemena, Santhosh Shanmugama, Jan-Laurens van der Steena, Jan Gilota, Ronn Andriessena, Matthias Simonb, Walter Ruettenb, Alexander U. Douglasb, Rob Raaijmakersc, Pawel E. Malinowskid, Kris Mynyd and Gerwin H. Gelincka,e a. Holst Centre/TNO, High Tech Campus 31, Eindhoven 5656 AE, The Netherlands b. Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands c. Philips Healthcare, Veenpluis 6-8, 5684 PC Best, The Netherlands d. Department of Large Area Electronics, imec vzw, Kapeldreef 75, Leuven B3001, Belgium e. Applied Physics Department, TU Eindhoven, Eindhoven, The Netherlands We demonstrate high performance X-ray imaging detectors on foil suitable for medical grade X-ray imaging applications. The detectors are based on solution-processed organic photodiodes forming bulk-heterojunctions from photovoltaic donor and acceptor blend. The organic photodiodes are deposited using an industrially compatible slot die coating technique with end of line processing temperature below 100°C. These photodiodes have extremely low dark leakage current density of 10-7 mA/cm2 at -2V bias with very high yield and have peak absorption around 550 nm wavelength. We combine these organic photodiodes with high mobility metal oxide semiconductor based thin film transistor arrays with high pixel resolution of 200ppi on thin plastic substrate. When combined with a typical CsI(TI) scintillator material on top, they are well suited for low dose X-ray imaging applications. The optical crosstalk is insignificant upto resolution of 200 ppi despite the fact that the photodiode layer is one continuous layer and is non-pixelated. Low processing temperatures are another key advantage since they can be fabricated on plastic substrate. This implies that we can make X-ray detectors on flexible foil. Those detectors can be mechanically more robust and light weight when compared to amorphous Si based detectors fabricated on glass substrate.
High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)
Yan Zhou, Zhenan Bao
The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as crystallinity, surface roughness, charge carrier mobility, and absorptions of the polymers blends are found irrelevant to the performance of these all polymer solar cells. This work demonstrates that a better understanding of tuning polymer phase separation domain size provides an important path towards high performance, all-polymer solar cells. The use of polymer side-chain engineering provides an effective molecular engineering approach that may be combined with additional processing parameter control to further elevate the performance of all-polymer solar cells. We obtained a record PCE of 4.8% (avarage from 20 devices), with an average JSC of 9.8 mA cm-2. The highest PCE shoots to 5.1%, with JSC as high as 10.2 mA cm-2, and VOC of 1.02 V. It is the highest performance ever published for an all-polymer solar cell.4 1. Li, G.; Zhu, R.; Yang, Y., Nat. Photon. 2012, 6 , 153-161. 2. (a) Nelson, J., Mater. Today 2011, 14 , 462-470; (b) Lin, Y.; Li, Y.; Zhan, X., Chem. Soc. Rev. 2012, 41, 4245-4272; (c) Chen, J.; Cao, Y., Acc. Chem. Res. 2009, 42, 1709-1718. 3. Sonar, P.; Fong Lim, J. P.; Chan, K. L., Energy Environ. Sci. 2011, 4, 1558. 4. Facchetti, A., Mater. Today 2013, 16 , 123-132.
Design of low band gap small molecules with alkyldicyanovinyl acceptor and different donor groups for efficient bulk heterojunction organic solar cells
Yuriy N. Luponosov, Jie Min, Alexander N. Solodukhin, et al.
A library of low band gap small molecules with alkyldicyanovinyl acceptor and triphenylamine, tris(2- methoxyphenyl)amine or dithienosilole donor groups linked through (oligo)thiophene conjugated spacers was designed and successfully synthesized. Systematic variations of the alkyl chain length and the number of conjugated thiophene rings in the molecules allowed to elucidate the structure-properties relationships for their solubility, absorption spectra, phase behavior, morphology and structure in thin films, as well as photovoltaic properties. Bulk heterojunction organic solar cells prepared from these molecules as donors and PCBM[70] as acceptor by solution processing showed power conversion efficiency up to 5.4 - 6.4%.
Morphology and Processing of Organic Solar Cells
icon_mobile_dropdown
The effect of thermal annealing on additive migration to the organic/metal interface in OPVs
J. Vinokur, I. Deckman, S. Obuchovsky, et al.
The power conversion efficiency of solar cells based on conjugated polymer:fullerene derivative donor:acceptor bulk heterojunctions is not yet sufficient for commercialization. The two most common techniques used to enhance cell performances are thermal treatments and utilization of interlayers. In this work we investigated the effect of the sequence of thermal annealing and the metal evaporation on interlayer formation induced by additives migration toward the metal/organic interface. For this purpose we chose to study P3HT:PCBM:PEG blends, on which we performed thermal annealing before or after the Al cathode deposition. We further characterized the device performances and determined, by XPS, the blend/Al interfacial compositions. We conclude that thermal annealing before Al deposition inhibits the migration of PEG to the organic/metal interface in the P3HT:PCBM:PEG system, while annealing after the Al deposition enhances it. Thus, our study reveals that there is a great significance in the sequence of which the thermal annealing and the cathode deposition are performed in additive-containing organic blends, on the interlayer formation, and as a result, on the device performance.
Morphology control for efficient and stable small molecule organic solar cells (Presentation Recording)
Hideyuki Tanaka, Eiichi Nakamura
Printable organic solar cells (OSCs) have received much attention because of their attractive advantage such as large scale, lightweight, low cost and facile fabrication process. In these solution-processable OSCs, bicontinuous network structure of phase-separated electron donor and acceptor materials in nanoscale becomes most crucial factor to realize high power conversion efficiency (PCE). The phase separation has been widely investigated with the bulk-heterojunction (BHJ) concept by use of pi-conjugated polymer and fullerene derivative. Small molecular materials also can be a good candidate material for the solution-processable OSCs, however, there are very few reports due to the difficulty constructing the nano scale phase separation despite it has practical advantages such as ease purification and high stability. Here, we demonstrate the new approach for fabricating efficient small molecular OSCs through controlling of phase-separation of binary blend of donor molecules and non-active soft materials. We found that the limited molecular diffusion of donor molecules within highly viscous soft matrix play a key role for the nano-scale phase separation. A 20–30 nm sized BP crystal can be created within a highly viscous matrix (TCTA), and that provides efficient charge carrier generation system showing high PCE of 7.8%.
Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)
Wei Ma, He Yan
Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.
Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics
C. Hördemann, K. Hirschfelder, M. Schaefer, et al.
The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.
Lifetime and Stability Issues for Organic and Perovskite Solar Cells
icon_mobile_dropdown
Degradation mechanism of planar perovskite solar cells (Presentation Recording)
Organic-inorganic hybrid halide perovskites are an interesting class of materials that have excellent semiconductor properties, and demonstrated promising applications on many fields, such as solar cells, water photolysis, light emitting diodes, and amplified spontaneous emission. So far, the device lifetime is still short, and this is an important key issue faced for all researchers in this field.[1] The deep understanding of their durability and degradation mechanism is critical and necessary toward future applications. Towards development of efficient and long-term stable perovskite solar cells (PSCs), we firstly studied the relationship between crystallization, morphology, device architecture, efficiency and durability of encapsulated PSCs. Furthermore, the degradation mechanism of the devices was elucidated by different experimental methods. The well crystallized and fully covered perovskite layer improves not only power conversion efficiency but also long-time durability. Compared to a widely used silver counter electrode, lithium fluoride/aluminum and gold electrode-based PSCs demonstrated better durability owing to less chemical degradation and interface changing. We also confirmed that the amount of accumulated charge carriers induces the degradation of the PSCs, which was proved by a thermally stimulated current technique. Finally, we realized a planar PSC with excellent durability by improving device encapsulation and optimizing device structures. Reference: 1. M. Grätzel, Nature Materials 2014, 13, 838-842.
Predicting thermal stability of organic solar cells through real-time capacitive techniques (Presentation Recording)
Marta Tessarolo, Antonio Guerrero, Mirko Seri, et al.
Bulk Heterojunction (BHJ) solar cells have reached Power Conversion Efficiencies (PCE) over 10% but to be a competitive product long lifetimes are mandatory. In this view, guidelines for the prediction and optimization of the device stability are crucial to generate improved materials for efficient and stable BHJ devices. For encapsulated cells, degradation mechanisms can be mainly ascribed to external agents such as light and temperature. In particular, thermal degradation appears to be related not only to the BHJ morphology but also to the adjacent interfaces. Therefore, in order to have a complete description of the thermal stability of a BHJ cell, it is necessary to consider the entire stack degradation processes by using techniques enabling a direct investigation on working devices. Here, five different donor polymers were selected and the OPV performance of the corresponding BHJ devices were monitored during the thermal degradation at 85°C, showing an exponential decay of the corresponding PCEs. In parallel, we measured the geometrical capacitance of analogous OPV devices as a function of temperature and we observed that at a defined temperature (TMAX), typical for each polymer-based device, the capacitance starts to decrease. Combining all these results we found an evident and direct correlation between TMAX and the PCE decay parameters (obtained from capacitance-temperature an thermal measurements, respectively). This implies that the capacitance-method here presented is a fast, reliable and relatively simple method to predict the thermal stability of BHJ solar cells without the need to perform time-consuming thermal degradation tests.
Perovskite solar cells: from device fabrication to device degradation (Presentation Recording)
Jinli Yang, Dianyi Liu, Braden Siempelkamp, et al.
Solar cells based on CH3NH3PbI3 have recently emerged at the forefront of solution-processable photovoltaic devices, with power conversion efficiencies as high as 20.1% having now been certified. In this presentation, I will discuss our research group’s work in the area of perovskite solar cells. Our early work demonstrated that room temperature solution-processing techniques can be used to prepare devices on flexible substrates while retaining excellent power conversion efficiencies. Since then, we have examined issues related to charge carrier diffusion, interfacial contacts, and device flexibility, with our most recent efforts focusing on probing device failure mechanisms using in situ synchrotron-based techniques.
High-efficiency perovskite solar cells with long operation lifetime (Presentation Recording)
Chenchen Yang, Weiran Cao, Nathan T. Shewmon, et al.
Perovskite solar cells have attracted tremendous attention for their outstanding energy conversion efficiency in the past few years. Due to the development of active materials, device architectures and processing methods, power conversion efficiency (PCE) of perovskite solar cells is now growing up to 20%. Beyond the efficiency, to get rid of Lead, the widely-used toxic element in the perovskite layers, as well as to improve the device/module operation lifetime are the other two major challenges that need to be solved before their commercialization. Here, we apply a layer of ZnO nanoparticles onto to a planar perovskite solar cell, which can not only improve the electron transport/extraction in the devices but highly improve the device operation lifetime. The devices were fabricated by spin-coating a poly(3,4-ethylenedioxythuiphene):polystyrene sulfonate (PEDOT:PSS) layer onto a glass/ITO substrate, followed by the deposition of a perovskite layer from a lead chloride (PbCl2) and methyl ammonium iodine (MAI) blend precursor solution. After that, a layer of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and a layer of ZnO nanoparticles were successively deposited as the electron transport layers, and the device was finished by thermally evaporation Al as the cathode. Such planar perovskite solar cell with ZnO NPs exhibits a maximum PCE of up to 14.1%, which is about 35% higher than that without the ZnO layer. Moreover, the device remains 80% of its initial PCE after 2500 hours under 1 sum illumination, majorly due to the protection of ZnO layer that prevent the diffusion of oxygen and moisture molecules into the perovskite layers as revealed by x-ray photoelectron spectroscopy studies.
Organic and Electrode Interfaces in Organic Solar Cells
icon_mobile_dropdown
Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layer (Presentation Recording)
Lethy K. Jagadamma, Mohammed Al-Senani, Aram Amassian
The present work details a facile and low-temperature (125C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, and yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates. We show that ammonia addition to the aqueous AZO nanoparticle solution is a critically important step toward producing compact and smooth thin films which partially retain the aluminum doping and crystalline order of the starting AZO nanocrystals. The ammonia treatment appears to reduce the native defects via nitrogen incorporation, making the AZO film a very good electron transporter and energetically matched with the fullerene acceptor. Importantly, highly efficient solar cells are achieved without the need for additional surface chemical passivation or modification, which has become an increasingly common route to improving the performance of evaporated or solution-processed ZnO ETLs in solar cells.
Polymer-facilitated low temperature fusing of spray-coated silver nanowire networks as transparent top and bottom electrodes in small molecule organic photovoltaics (Presentation Recording)
Franz Selzer, Nelli Weiß, David Kneppe, et al.
Networks of silver nanowires (AgNWs) are promising candidates for transparent conducting electrodes in organic photovoltaics (OPV), as they achieve similar performance as the commonly used indium tin oxide (ITO) at lower cost and increased flexibility. The initial sheet resistance (Rs) of AgNW electrodes typically needs to be reduced by a post-annealing step (90 min@200 °C), being detrimental for processing on polymeric substrates. We present novel low temperature-based methods to integrate AgNWs in organic small molecule-based photovoltaics, either as transparent and highly conductive bottom-electrode or, for the first time, as spray-coated AgNW top-electrode. The bottom-electrodes are prepared by organic matrix assisted low-temperature fusing. Here, selected polymers are coated below the AgNWs to increase the interaction between NWs and substrate. In comparison to networks without these polymeric sublayers, the Rs is reduced by two orders of magnitude. AgNW top-electrodes are realized by dispersing modified high-quality AgNWs in inert solvents, which do not damage small molecule layers. Accordingly, our AgNW dispersion can be spray-coated onto all kind of OPV devices. Both bottom- and top-electrodes show a Rs of <11 Ω/ at >87 % transparency directly after spray-coating at very low substrate temperatures of <80 °C. We also demonstrate the implementation of our AgNW electrodes in organic solar cells. The corresponding devices show almost identical performance compared to organic solar cells exploiting ITO as bottom or thermally evaporated thin-metal as top-electrode.
A solution-doped small molecule hole transport layer for efficient ITO-free organic solar cells (Presentation Recording)
Ludwig Bormann, Franz Selzer, Karl Leo, et al.
Indium-tin-oxide-free (ITO-free) organic solar cells are an important, emerging research field because ITO transparent electrodes are a bottleneck for cheap large area devices on flexible substrates. Among highly conductive PEDOT:PSS and metal grids, percolation networks made of silver nanowires (AgNW) with a diameter in the nanoscale show a huge potential due to easy processing (e.g. spray coating), high aspect ratios and excellent electrical and optical properties like 15 Ohm/sq with a transmission of 83.5 % including the substrate. However, the inherent surface roughness of the AgNW film impedes the implementation as bottom electrode in organic devices, especially fully vacuum deposited ones, where often shunts are obtained. Here, we report about the solution processing of a small molecule hole transport layer (s-HTL) comprising N,N'-((Diphenyl-N,N'-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine (BF-DPB, host material) and the proprietary NDP9 (p-dopant) deposited from tetrahydrofuran (THF) as non-halogenated, “green” solvent. We show, that the doping process already takes place in solution and that conductivities, achieved with this process at high doping efficiencies (4 * 10^-4 S/cm at 10 wt% doping concentration), are comparable to thermal co-evaporation of BF-DPB:NDP9 under high vacuum, which is the proven deposition method for doped small molecule films. Applying this s-HTL to AgNW films leads to well smoothened electrodes, ready for application in organic devices. Vacuum-deposited organic p-i-n solar cells with DCV2-5T-Me(3:3):C60 as active layer show a power conversion efficiency of 4.4% and 3.7% on AgNW electrode with 35nm and 90 nm wire diameter, compared to 4.1% on ITO with the s-HTL.
Transparent conductive thin-film encapsulation layers (Presentation Recording)
Andreas Behrendt, Tobias Gahlmann, Sara Trost, et al.
Gas diffusion barriers (GDB) are inevitable to protect sensitive organic materials or devices against ambient gases. Typically, thin-film gas diffusion barriers are insulators, e.g. Al2O3 or multilayers of Al2O3/ZrO2, etc.. A wide range of applications would require GDB which are at the same time transparent and electrically conductive. They could serve as electrode and moisture barrier simultaneously, thereby simplifying production. As of yet, work on transparent conductive GDB (TCGDBs) is very limited. TCGDBs based on ZnO prepared by atomic layer deposition (ALD) have been reported. Due to the chemical instability of ZnO, it turns out that their electrical conductivity severely deteriorates by orders of magnitude upon exposure to damp heat conditions after very short time. We will show that these issues can be overcome by the use of tin oxide (SnO2). Conductivities of up to 300 S/cm and extremely low water vapor transmission rates (WVTR) on the order of 10-6 g/(m2 day) can been achieved in SnOx layers prepared by ALD at low temperatures (<150°C). A sandwich of SnOx/Ag/SnOx is shown to provide an average transmittance of 82% and a low sheet resistance of 9 Ohm/sq. At the same time the resulting electrodes are extremely robust. E.g., while unprotected Cu and Ag electrodes degrade within a few minutes at 85°C/85%rH (e.g. Cu lost 7 orders of magnitude in electrical conductivity), sandwich structures of SnOx/(Cu or Ag)/SnOx remain virtually unchanged even after 100 h. The SnOx in this work will also provide corrosion protection for the metal in case of harsh processing steps on top these electodes (e.g. acidic). We demonstrate the application of these TCGDBs as electrodes for organic solar cells and OLEDs.
Poster Session
icon_mobile_dropdown
Interface trap density effect on efficiency of Fullerene organic Schottky diode
Mebarka Daoudi, Nesrine Mendil, Zakarya Berkai, et al.
In order to optimize the device performance it is very important to have knowledge about intrinsic properties, particularly the charge transport and charge injection properties. One of the basic methods to investigate the charge transport in interface metal/organic semiconductors is to determine the dark current density voltage characteristic (J-V), where the important effects which describe that transport mechanism are the space charge, trapping and Schottky effects [1]. The interface trap density effect on dark J-V characteristics of fullerene (C60) Schottky diode is investigated here for different electrodes LiF/Al, Al, Ag and Pt. The C60/LiF/Al interface has been found to exhibit the ohmic interface type junction in C60 electronic only diode. We have a good agreement with the experimental results.
Verification of effect of electric field on electron transport in TiO2 electrode
Kai-Ling Chuang, Yi-Jia Chen, Ming-Show Wong, et al.
We demonstrated that the dense TiO2 planar negative electrode is an effective electron transport material in the perovskite solar cells. The highest Voc is 900 mV using negative electrode with a dense TiO2 layer of 400 nm plus a mesoporous TiO2 layer of 400 nm. For conventional dye-sensitized solar cells (DSSCs) the thickness of the mesoporous negative electrode is around 15 μm. The ideal range of film thickness in DSSCs is usually 12~16 μm, suggesting that the electron has comparable diffusion length in the mesoporous negative electrode such that the electron recombination is insignificant below 15 μm. However, design of thicker mesoporous TiO2 negative electrode in perovskite solar cells is not usually encouraged as the solar cell efficiency decreases with electrode thickness greater than 500 nm. In this study, we would like to verify if the efficiency decrease of perovskite solar cells with electrode thickness is really due to the increase of thickness of TiO2 electrode itself or some consequences that come with the increase of thickness, such as increased roughness. We will report the solar cell efficiency dependence on the thickness of dense TiO2 layer in negative electrode so to verify if the electric field does play a role in electron transport in the TiO2 electrode. With this understanding, we will be able to design a novel structure of TiO2 electrode that is suitable for perovskite solar cells.
Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species
Brian G. Alberding, Edwin J. Heilweil
Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2’-bipyridyl-4,4’-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.
Optimization of interfacial layer for double and triple junction polymer solar cell
Abu Farzan Mitul, Lal Mohammad, Bjorn Vaagensmith, et al.
Solution processed tandem polymer solar cell has drawn a great deal of attention due its low cost, ease of production and capability of harvesting solar energy more efficiently. In solution processed tandem polymer solar cell, the most challenging part is the optimization of interfacial layer. In this work, we have investigated the robustness of PEDOT:PSS/AZO/PEIE interfacial layer to develop tandem polymer solar cell. While developing triple junction polymer solar cell, temperature of second interfacial layer has also a great impact on overall device performance. Here, the performance of tandem polymer solar cell was investigated on different temperature of interfacial layer.
Multiscale analysis of the effect of micro-phase separation on the charge transfer at the PEDOT:PSS and P3HT:PCBM layer interface
The influence of micro phase behavior on the charge transfer at the interface between PEDOT:PSS and P3HT:PCBM layers was studied using multiscale analysis. Calculated Flory- Huggins parameters indicated that the PEDOT attracts P3HT and repulses PCBM that agrees well with the experimental observation of the development of P3HT rich interface during the BHJ layer formation. Based on the calculated Flory-Huggins parameters, mesoscale DPD simulations were conducted for PEDOT:PSS and P3HT:PCBM layers. Results were mapped to the CG (coarse grained) and then atomistic scales where atomistic details of the interface were studied. The density of nonbonding close contacts including that from reorientation between PEDOT and P3HT was quantified, vibronic coupling and carrier transfer efficiency were discussed.
Study of PEDOT: PSS and BCP thicknesses effect on SubPc/C60 organic solar cell efficiency
Nesrine Mendil, Mebarka Daoudi, Zakarya Berkai, et al.
A high-performance of a planar hetejunction structure is demonstrated by using Fullerene (C60) and Boron Subphthalocyanine Chloride (SubPc) sandwiched between a cathode and an anode, indium tin oxide (ITO) and aluminum (Al), respectively. Often, there will also exist a buffer layer such as Poly 3,4-EthyleneDioxyThiophene : Poly- Styrene Sulphonate (PEDOT:PSS) and Bathocuproine (BCP) between any active layer and adjacent electrode, which is responsible for increasing efficiency through modifying the work function and controlling exciton diffusion. The cell that we studied is composed of the following structure: ITO(30nm)/PEDOT:PSS(xnm)/SubPc(25nm)/C60(35nm)/BCP(ynm)/Al(30nm), with different value of x=5,10,12,15,20 nm and y=8,10,12,14,16nm. So, the aim of our work is to investigate the effect of PEDOT: PSS and BCP thicknesses on the efficiency of this organic solar cell.