SPIE Membership Get updates from SPIE Newsroom
  • Newsroom Home
  • Astronomy
  • Biomedical Optics & Medical Imaging
  • Defense & Security
  • Electronic Imaging & Signal Processing
  • Illumination & Displays
  • Lasers & Sources
  • Micro/Nano Lithography
  • Nanotechnology
  • Optical Design & Engineering
  • Optoelectronics & Communications
  • Remote Sensing
  • Sensing & Measurement
  • Solar & Alternative Energy
  • Sign up for Newsroom E-Alerts
SPIE Photonics West 2019 | Call for Papers

2018 SPIE Optics + Photonics | Register Today



Print PageEmail Page


How astronomers fill in uncharted areas of the universe

Christian Science Monitor
3 November 2009

Astronomers are filling in the blank spaces on their 3-D map of our universe thanks to their ability to sense almost every conceivable form of electromagnetic radiation. Those blanks include remote regions of space and time when the first stars formed and when young galaxies began to group themselves into gravitationally bound clusters.

Last April, NASA's Swift gamma ray space telescope detected what astronomers called a gigantic "blast from the past." Gamma rays are the most energetic form of electromagnetic radiation. Astronomers would still be scratching their heads over what exactly they had found if those gammas were their only data. So observatories around the world immediately began studying the event through radio waves, infrared radiation, and X-rays. Now two international research teams report that those data give direct insight into the unexplored era when the first stars switched on.

Full story from the Christian Science Monitor