Optimax Systems, Inc. Get updates from SPIE Newsroom
  • Newsroom Home
  • Astronomy
  • Biomedical Optics & Medical Imaging
  • Defense & Security
  • Electronic Imaging & Signal Processing
  • Illumination & Displays
  • Lasers & Sources
  • Micro/Nano Lithography
  • Nanotechnology
  • Optical Design & Engineering
  • Optoelectronics & Communications
  • Remote Sensing
  • Sensing & Measurement
  • Solar & Alternative Energy
  • Sign up for Newsroom E-Alerts
SPIE Photonics West 2018 | Call for Papers

SPIE Defense + Commercial Sensing 2018 | Call for Papers

SPIE Photonics Europe 2018 | Call for Papers

SPIE Journals OPEN ACCESS

SPIE PRESS

SPIE PRESS

Print PageEmail Page

Defense & Security

New circuit uses silicon to reduce MMW imager cost

Electrical engineers from the University of California, San Diego invented radio frequency integrated circuits that could lead to significantly less expensive imaging systems for identifying concealed weapons, for helping helicopters to land during dust storms, and for high frequency data communications.

In particular, the electrical engineers created high-performance W-Band silicon-germanium (SiGe) radio frequency integrated circuits (RFICs) for passive millimeter-wave imaging.

"The new circuit functions at the same frequencies as some of the most advanced millimeter wave imagers around," said Jason May, an electrical engineering PhD student at UC San Diego's Jacobs School of Engineering and first author of a recent paper on the technique. "The big difference is that we are using a commercial silicon semiconductor process technology while other systems are typically customized and very expensive. The technologies that we use are very inexpensive and reliable, so we should be able to bring the costs of those sorts of systems down, perhaps even to handheld scanners someday."

The new circuit includes an antenna that can be used to capture radiation in the millimeter wave frequency emitted from the human body and from objects under a person's clothing. This radiation passes through clothing largely or completely unaffected.

Imagers operating at millimeter waves are particularly useful because they can resolve images down to a millimeter scale, fine enough detail to identify small objects and separate items on a person's body.

"By the size of the signal we detect, we can tell the temperature of the signal we are looking at," explained Gabriel Rebeiz, the electrical engineering professor at UC San Diego's Jacobs School of Engineering supervising the project. "An imager with our chip could resolve images down to a millimeter scale, enabling us to identify very small objects that are on someone's body."