SPIE Membership Get updates from SPIE Newsroom
  • Newsroom Home
  • Astronomy
  • Biomedical Optics & Medical Imaging
  • Defense & Security
  • Electronic Imaging & Signal Processing
  • Illumination & Displays
  • Lasers & Sources
  • Micro/Nano Lithography
  • Nanotechnology
  • Optical Design & Engineering
  • Optoelectronics & Communications
  • Remote Sensing
  • Sensing & Measurement
  • Solar & Alternative Energy
  • Sign up for Newsroom E-Alerts
SPIE Photonics West 2018 | Call for Papers

SPIE Defense + Commercial Sensing 2018 | Call for Papers

SPIE Journals OPEN ACCESS

SPIE PRESS

SPIE PRESS

Print PageEmail Page

Solar & Alternative Energy

Moth eyes inspire anti-reflective solar cell coatings

Antireflection coatings have become one of the key issues for mass production of silicon solar cells. Silicon solar cells are the most common solar cells on the market today. They are constructed with layers of n-type silicon having many electrons and p-type silicon having many electron holes (portions with missing electrons). When hit by sunlight, an equal number of electrons and electron holes are generated at the interface between the two silicon layers and, as the electrons migrate from the n-type silicon to the p-type silicon, an electric flow is generated.

One of the problems with silicon solar cells is the high refractive index of silicon, which causes more than 30% of incident light to be reflected back from the surface of the silicon crystals.

Borrowing from Mother Nature's millions of years old design book, researchers have now come up with a nanotechnology antireflection coating inspired by the eyes of moths.

Full story from Nanowerk.