 Astronomy
 Biomedical Optics & Medical Imaging
 Defense & Security
 Electronic Imaging & Signal Processing
 Illumination & Displays
 Lasers & Sources
 Micro/Nano Lithography
 Nanotechnology
 Optical Design & Engineering
 Optoelectronics & Communications
 Remote Sensing
 Sensing & Measurement
 Solar & Alternative Energy
 Sign up for Newsroom EAlerts
 Information for:
Advertisers




Lasers & Sources
The quantum freeelectron laser
Rodolfo Bonifacio, Nicola Piovella, Gordon Robb, and Dino Jaroszynski
An ultracompact brilliant coherent xray source, where both the accelerator and the wiggler are provided by intense laser pulses, promises unsurpassed spectral and temporal qualities.
18 May 2009, SPIE Newsroom. DOI: 10.1117/2.1200905.1566
Ultrashort pulses of xray radiation from synchrotron sources have become ubiquitous tools for investigating the structure of matter. Their immense usefulness has led to the development of large international facilities. These are based on radiofrequency accelerating cavities and magnetic undulators, and provide brief radiation pulses capable of probing and taking ‘snapshots’ of molecules and solidstate matter. However, synchrotron sources produce pulses of incoherent radiation that are limited to relatively low peak brilliance and durations of order a picosecond and longer. As a next significant step in advancing xray sources, the freeelectron laser (FEL) produces femtosecondduration pulses with a peak brilliance seven orders of magnitude higher than synchrotrons. Several large international teams are constructing FELs to produce xray radiation through selfamplified spontaneous emission (SASE): the Linac Coherent Light Source^{1} in Stanford, CA, the European XFEL^{2} in Hamburg, Germany, and the SPring8 Compact SASE Source^{3} in Hyōgo prefecture, Japan. One drawback of such sources is that they produce pulses composed of many random superradiant spikes with a broad noise spectrum.^{4} In the classical picture of the FEL, this spiky xray pulse results from the random initial phases of electrons entering the amplifier. However, it is clear from quantum theory that the emission process is discrete. Moreover, it must include quantization of the electron motion, which completely changes both the properties of the emitted radiation and the resulting momentum distribution of the electrons. Accordingly, an FEL operating in the quantum regime should offer improved performance over its classical counterpart, in particular, enhanced spectral brightness and degree of coherence. Figure 1. Numerical solutions for L_{b}=40 L_{c} ( L_{b}: Electronbunch length. L _{c}: Cooperation length.) and δ=0 (δ: Frequency detuning), in (a, c) the classical regime ( and ) and (b, d) the quantum regime ( and ). Graphs (a) and (b) show the scaled intensity, and graphs (c) and (d) the corresponding scaled power spectra as a function of scaled frequency , where ω is the resonance frequency and ω ′ the relative frequency with respect to the ω _{s} and divided by ρ, the freeelectronlaser parameter. The dotted line in (a) marks the front edge of the electron pulse. : Normalized vectorfield potential of the amplified freeelectronlaser radiation. : Scaled wiggler length. , where v is the velocity of the electrons and t a time interval. When an electron emits a photon, the momentum recoil is ℏk. This is naturally quantized and can assume only the discrete values n(ℏk). In classical FEL theory, the initial spontaneousradiation field is amplified through the ‘ponderomotive’ force resulting from the interference of the radiation and undulator fields. This leads to electron bunching on a wavelength scale and exponential amplification with a rate governed by ρ, the FEL parameter.^{5} ρ depends on the undulator period, and magneticfield strength and electronbeam parameters such as, e.g., the Lorentz factor at resonance for a particular wavelength of the amplified light, γ_{r}, peak current, and emittance. The number of photons emitted depends on ρ, and is given by the quantumFEL (QFEL) parameter^{6}
which is the ratio of the maximum classical momentum spread (of order mcγ_{r}ρ) to ℏk. When , many momentum levels are involved since the momentum spread is much larger than the level spacing. The discreteness of the momentum becomes irrelevant, and one recovers the classical behavior, characterized by a random series of superradiant spikes. The spectrum of the emitted field is broad and chaotic. Conversely, when , an electron emits a single photon and makes a single momentum transition. The result is a single narrowline spectrum that is Fourierlimited by the electronbeam duration, i.e., Δω/ω ~ λ/L_{b}.^{6,7} This means that a QFEL operating in the Â ngstrom region with an electronbunch length L_{b}=1mm could generate radiation with a relative linewidth of 10^{−7}, much smaller than the envelope linewidth 2ρ of the classical SASE spectrum (typically of order 10^{−3}). Hence, the QFEL could be a very promising xray source generating quasimonochromatic radiation (although at a lower power than in a classical SASE FEL) and a formidable tool for ultrahighresolution process studies. The ‘quantum purification’ of the SASE spectrum can be interpreted by the following simple argument. The maximum induced energy spread in an FEL is δγ/γ ~ ρ, which in terms of momentum spread is . The QFEL parameter yields the ratio between the maximum momentum spread (induced in the classical regime) and the photon recoil momentum ℏk. Quantum effects become important when , since then the discreteness of momentum exchange is relevant. This provides a simple explanation of the origin of the broad and spiky classical spectrum and its reduction to a single line in the quantum regime (see Figure 1 and videos^{8,9}). Experimental realization of a QFEL requires a laser wiggler instead of the magnetic wiggler usually used in classical SASE experiments.^{1–3} In a laserwiggler configuration, a lowenergy electron beam backscatters the photons of a counterpropagating highpower laser into a photon frequency upshifted by a factor 4γ^{2}. However, such a choice sets stringent conditions on the electron and laserbeam parameters.^{10} We propose to exploit the new generation of laserdriven wakefield accelerators,^{11} where electrons are accelerated to high energies by the electrostatic forces of a laserdriven plasma wave. The advantage is that both the electron beam and the laser beam acting as a wiggler are contained in a guiding structure. The electrons are continuously focused by the transverse fields of the ion ‘bubble,’ while a preformed plasma acts as a waveguide to lead the wiggler laser in maintaining perfect overlap over many Rayleigh lengths. Furthermore, because the accelerator and the FEL are ‘alloptical’ (they both use lasers to provide accelerating and wiggler fields, respectively), they can be placed on a very compact footprint, or perhaps one should even say fingerprint. It should be possible to construct a QFEL driven by a wakefield accelerator that is only a few centimeters long. This presents several significant challenges. The first and most stringent is to produce an electron beam with a sufficiently small energy spread, which must be less than the recoil momentum. This sets a limit of σ_{γ}/γ < 10^{−4}, which can be alleviated somewhat by going to very short wavelengths, e.g., 0.05Â. However, the peak current of the electron beam should be greater than 10kA and preferably close to 100kA, which prevailing wisdom does not rule out. Our next efforts will focus on operating a QFEL with harmonics to reach even shorter wavelengths, either in the seeded or in the SASE mode.
Rodolfo Bonifacio Istituto Nazionale di Fisica Nucleare (INFN) Milan, Italy and Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro, Brazil In 1984, Rodolfo Bonifacio laid the foundations for the highgain FEL starting from noise, the socalled SASE FEL, which is central to several international programs. He received the Michelson Medal from the Franklin Institute for his studies of optical bistability, and the Einstein Medal from the Society for Quantum Optics and Quantum Electronics for his pioneering work on the FEL. Recently, he and colleagues proposed a completely new QFEL regime. Nicola Piovella INFN Milano, Italy and Dipartimento di Fisica Università degli Studi di Milano Milan, Italy Nicola Piovella was born in Milan in 1959. He received a PhD in physics from the University of Milan in 1990 with a thesis on superradiance in FELs. Since 1996 he has been with the Department of Physics of the University of Milan, working on collective effects in beam and atomic physics. His research interests are freeelectron lasers, BoseEinstein condensation, and laser cooling. Gordon Robb, Dino Jaroszynski Physics Department University of Strathclyde Glasgow, Scotland Gordon Robb is a lecturer. His research interests involve various collective, nonlinear interactions between light and matter. These include freeelectron lasing and collective scattering of light by cold atomic gases. Dino Jaroszynski is director of the Electron and Terahertz to Optical Pulse Source (TOPS) and leads the Advanced Laser Plasma Highenergy Accelerators towards Xrays (ALPHAX) project to develop radiation sources based on laserplasma accelerators. He has made pioneering observations of superradiance in FELs and has studied shortpulse effects and coherent startup of FELs due to prebunching.
References: 4. R. Bonifacio, L. De Salvo, P. Pierini, N. Piovella, C. Pellegrini, Spectrum, temporal structure, and fluctuations in a highgain free electron laser starting from noise, Phys. Rev. Lett. 73, pp. 70, 1994.


