Proceedings Volume 10539

Photonic Instrumentation Engineering V

cover
Proceedings Volume 10539

Photonic Instrumentation Engineering V

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 4 April 2018
Contents: 11 Sessions, 41 Papers, 31 Presentations
Conference: SPIE OPTO 2018
Volume Number: 10539

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10539
  • Innovative Photonics Instrumentation I
  • Innovative Photonics Instrumentation II
  • Photonics Sensors I
  • Photonics Sensors II
  • Spectroscopic Photonic Instruments
  • Photonic Metrology Instrumentation I
  • Photonic Metrology Instrumentation II
  • Innovative Photonics Instrumentation III
  • Innovative Photonics Instrumentation IV
  • Poster Session
Front Matter: Volume 10539
icon_mobile_dropdown
Front Matter: Volume 10539
This PDF file contains the front matter associated with SPIE Proceedings Volume 10539 including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Innovative Photonics Instrumentation I
icon_mobile_dropdown
Ultra-high-speed variable focus optics for novel applications in advanced imaging
S. Kang, E. Dotsenko, D. Amrhein, et al.
With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.
Time-of-flight range imaging for underwater applications
Hannes Merbold, Gion-Pol Catregn, Tobias Leutenegger
Precise and low-cost range imaging in underwater settings with object distances on the meter level is demonstrated. This is addressed through silicon-based time-of-flight (TOF) cameras operated with light emitting diodes (LEDs) at visible, rather than near-IR wavelengths. We find that the attainable performance depends on a variety of parameters, such as the wavelength dependent absorption of water, the emitted optical power and response times of the LEDs, or the spectral sensitivity of the TOF chip. An in-depth analysis of the interplay between the different parameters is given and the performance of underwater TOF imaging using different visible illumination wavelengths is analyzed.
Applications of a reconfigurable SPAD line imager (Conference Presentation)
Samuel Burri, Claudio Bruschini, Edoardo Charbon
Single-photon avalanche diodes (SPADs) fabricated in standard CMOS processes enable cost-effective volume production of sensors capable of time-stamping individual photons with high accuracy. This capability makes the sensors ideally suited for applications employing time-correlated single photon counting (TCSPC), such as fluorescence lifetime imaging, fluorescence correlation spectroscopy, time-resolved Raman spectroscopy, positron emission tomography and many more. The LinoSPAD imaging system is based on a 256 pixel SPAD linear array detector tightly coupled to an FPGA for a fully reconfigurable imager architecture. A series of 15 imager systems composed of a SPAD sensor and an FPGA card have been manufactured and thoroughly characterized using a baseline architecture. The low cost FPGA used in our prototyping system implements an array of 64 time-to-digital converters with a resolution of 25 ps over a span of 4 ms. A set of 4 pixels share a TDC with dedicated memory to record individual event timestamps or histograms of photon arrival times. A histogram processing engine is built into the FPGA to correct for most non-linearities inherent to the FPGA TDC architecture. We present system details and characterization results of our small series of systems, where we measured breakdown voltage, DCR, PDP for each pixel. This allows us to quantify the parameter spread in a single sensor as well as between multiple sensors. Furthermore, we present some of the possible applications (single-photon and coincidence counting, 3D TOF, FLIM, etc.) and selected results from our collaborations with several users.
Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna
Yuya Furukado, Hiroshi Abe, Yosuke Hinakura, et al.
Time of flight LiDARs are used for auto-driving of vehicles, while FMCW LiDARs potentially achieve a higher sensitivity. In this study, we fabricated and tested each component of a FMCW LiDAR based on Si photonics and experimentally simulated the ranging action. Here, we drove a Si photonic crystal slow light modulator with linearly frequency-chirped signal in the frequency band of 500–1000 MHz and a repetition frequency of 100 kHz, to generate FM-signal light from a narrow-linewidth laser source. Next, we branched the signal light into two paths. One was inserted into a fiber delay line of 20–320 m and its output was irradiated to a photonic crystal slow beam steering device acting as an optical antenna via the free-space transmission. When the irradiation angle was optimized so that the antenna gain took maximum for a set laser wavelength, light was efficiently coupled into the antenna. We mixed the light output from the antenna with reference light of the other path with no delay, and detected it by balanced photodiodes. We observed a beat signal whose frequency well agreed with the theoretical value predicted from the length of the delay line. Thus, we succeeded in the experimental simulation of the FMCW LiDAR. We also observed a spectral sequence around the beat spectrum, in which the inter-frequency spacing equals the repetition frequency and corresponds to a range resolution of 30 cm which will be improved by expanding the modulation bandwidth.
Innovative Photonics Instrumentation II
icon_mobile_dropdown
Large depth high-precision FMCW tomography using a distributed feedback laser array
Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.
Frequency locking of compact laser-diode modules at 633 nm
This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10−8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.
Temperature-controller-free FDML laser based on adaptive sweep rate tuning by KTN scanner
Mingchen Chen, Seiji Toyoda, Masahiro Ueno, et al.
Stabilization of a Fourier domain mode-locked (FDML) laser was achieved in a wide temperature range of over 30 degrees by adaptively tuning the sweep rate without using any complicated or massive temperature control equipment. The proposed FDML laser in a fiber ring cavity configuration consists of an optical tunable filter based on a KTN (KTa1-xNbxO3) scanner. The FDML laser operates at the sweep rate of around 200 kHz. The output properties show an output power of 2 mW and coherence lengths of 8.5 mm for the sweep range of 100 nm and 11 mm for that of 80 nm at the center wavelength of 1300 nm.
Frequency-modulated laser ranging sensor with closed-loop control
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
Refractive waveguide non-mechanical beam steering (NMBS) in the MWIR
Jason D. Myers, Jesse A. Frantz, Christopher M. Spillmann, et al.
Beam steering is a crucial technology for a number of applications, including chemical sensing/mapping and light detection and ranging (LIDAR). Traditional beam steering approaches rely on mechanical movement, such as the realignment of mirrors in gimbal mounts. The mechanical approach to steering has several drawbacks, including large size, weight and power usage (SWAP), and frequent mechanical failures. Recently, alternative non-mechanical approaches have been proposed and developed, but these technologies do not meet the demanding requirements for many beam steering applications. Here, we highlight the development efforts into a particular non-mechanical beam steering (NMBS) approach, refractive waveguides, for application in the MWIR. These waveguides are based on an Ulrich-coupled slab waveguide with a liquid crystal (LC) top cladding; by selectively applying an electric field across the liquid crystal through a prismatic electrode, steering is achieved by creating refraction at prismatic interfaces as light propagates through the device. For applications in the MWIR, we describe a versatile waveguide architecture based on chalcogenide glasses that have a wide range of refractive indices, transmission windows, and dispersion properties. We have further developed robust shadow-masking methods to taper the subcladding layers in the coupling region. We have demonstrated devices with >10° of steering in the MWIR and a number of advantageous properties for beam steering applications, including low-power operation, compact size, and fast point-to-point steering.
Photonics Sensors I
icon_mobile_dropdown
Highly efficient router-based readout algorithm for single-photon-avalanche-diode imagers for time-correlated experiments
A. Cominelli, G. Acconcia, F. Caldi, et al.
Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system.

During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip.

Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth.

We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts.

Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.
Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array
Anthony W. Papageorgiou, Luke A. Parkinson, Andrew R. Karas, et al.
Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.
A distributed fluid level sensor suitable for monitoring fuel load on board a moving fuel tank
John W. Arkwright, Luke A. Parkinson, Anthony W. Papageorgiou
A temperature insensitive fiber Bragg grating sensing array has been developed for monitoring fluid levels in a moving tank. The sensors are formed from two optical fibers twisted together to form a double helix with pairs of fiber Bragg gratings located above one another at the points where the fibers are vertically disposed. The sensing mechanism is based on a downwards deflection of the section of the double helix containing the FBGs which causes the tension in the upper FBG to decrease and the tension in the lower FBG to increase with concomitant changes in Bragg wavelength in each FBG. Changes in ambient temperature cause a common mode increase in Bragg wavelength, thus monitoring the differential change in wavelength provides a temperature independent measure of the applied pressure. Ambient temperature can be monitored simultaneously by taking the average wavelength of the upper and lower FBGs.

The sensors are able to detect variations in pressure with resolutions better than 1 mmH2O and when placed on the bottom of a tank can be used to monitor fluid level based on the recorded pressure. Using an array of these sensors located along the bottom of a moving tank it was possible to monitor the fluid level at multiple points and hence dynamically track the total fluid volume in the tank.

The outer surface of the sensing array is formed from a thin continuous Teflon sleeve, making it suitable for monitoring the level of volatile fluids such as aviation fuel and gasoline.
E-field fiber tip sensors by exploiting the electro-optic tunability of lithium niobate photonic crystals (Conference Presentation)
Bruno Robert, Venancio Calero, Roland Salut, et al.
Biomedical engineering (BME), electrophysiology, Electromagnetic Compatibility (EMC) or aerospace and defense fields demand compact electric field sensors with very small spatial resolution, low sensitivity and large bandwidth. We show that the electro-optical property of lithium niobate coupled with the tunability of photonic crystals can answer this request through Lab-on-Fiber technology. First, band diagram calculations and Finite Difference Time Domain (FDTD) simulations analysis lead to the design of the most suitable two-dimensional photonic crystal geometry. We show that light normal incidence on rectangular array of air holes in free standing X-cut thin film lithium niobate produces a very sharp and E-field sensitive Fano resonance at a wavelength of 1550nm. Then, in order to concentrate the E-Field to be detected in the photonic crystal area (20μm*20μm*0.7μm) we design a thin metallic antenna, scaled down them in such a way that it does not produce any disturbances while increasing the sensitivity. The LN membrane with the antenna is fabricated by standard clean room processes and Focused Ion Beam (FIB) is used to mill the photonic crystal. Then, by means of a flexible/bendable transparent membrane, we were able to align and to attach the photonic crystal onto a ferrule ending polarization maintained optical fiber. Optical characterizations show that the Fano resonance is easily modulated (wavelength shifted) by the surrounding E-field. The novel non-intrusive E-field sensor shows linearity, low sensitivity, large bandwidth (up to 100GHz) and a very small spatial resolution (≈20μm). To the best of our knowledge, this spatial resolution has never been achieved in E-field optical sensing before.
Photonics Sensors II
icon_mobile_dropdown
Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers
Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.
Flow immune photoacoustic sensor for real-time and fast sampling of trace gases
Jan C. Petersen, David Balslev-Harder, Nikola Pelevic, et al.
A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 ±0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.
A passive optical fibre hydrophone array utilising fibre Bragg grating sensors
Andrew R. Karas, Anthony W. Papageorgiou, Peter R. Cook, et al.
Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas.

This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.
Fast and broadband detector for laser radiation
We developed a fast detector (patent pending) based on the Laser Induced Transverse Voltage (LITV) effect. The advantage of detectors using the LITV effect over pyroelectric sensors and photodiodes for laser radiation measurements is the combination of an overall fast response time, broadband spectral acceptance, high saturation threshold to direct laser irradiation and the possibility to measure pulsed as well as cw-laser sources.

The detector is capable of measuring the energy of single laser pulses with repetition frequencies up to the MHz range, adding the possibility to also measure the output power of cw-lasers.

Moreover, the thermal nature of the sensor enables the capability to work in a broadband spectrum, from UV to THz as well as the possibility of operating in a broad-range (10-3-102 W/cm2 ) of incident average optical power densities of the laser radiation, without the need of adopting optical filters nor other precautions.
Mid-infrared photoacoustic spectroscopy for atmospheric NO2 measurements
Mikael Lassen, Laurent Lamard, David Balslev-Harder, et al.
A photoacoustic (PA) sensor for spectroscopic measurements of NO2-N2 at ambient pressure and temperature is demonstrated. The PA sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared (MIR) optical parametric oscillator (OPO). Spectroscopic measurements of NO2-N2 in the 3.25 μm to 3.55 μm wavelength region with a resolution bandwidth of 5 cm-1 and with a single shot detection limit of 1.6 ppmV (μmol/mol) is demonstrated. The measurements were conducted with a constant flow rate of 300 ml/min, thus demonstrating the suitability of the gas sensor for real time trace gas measurements. The acquired spectra is compared with data from the Hitran database and good agreement is found. An Allan deviation analysis shows that the detection limit at optimum integration time for the PAS sensor is 14 ppbV (nmol/mol) at 170 seconds of integration time, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.3×10-7 W cm-1 Hz-1/2.
Spectroscopic Photonic Instruments
icon_mobile_dropdown
Detection of low-concentration ammonia using differential laser-induced fluorescence on vapochromic coordination polymers
Dawei Yin, Glenn H. Chapman, David Stevens, et al.
The detection of ammonia in parts per millions range has been challenging in sensors research, and is of great importance for industrial applications. In previous literature, Vapochromic Coordination Polymers (VCP) were developed to achieve luminescence upon a targeted gas exposures. We investigate a specific VCP, Zn[Au(CN)2]2,as an ammonia sensing material. Upon high concentration ammonia exposure, the fluorescent peak under near-UV stimulation undergoes a spectral shift from 460nm to 520nm, while the intensity increases by 3~4X. However, at ammonia concentrations < 50ppm, the spectral shift becomes hidden within the overall changing fluorescent spectrum shape. Then simple methods, such as detecting the peak wavelength or subtracting post-exposure from pre-exposure spectrums do not work. We developed further excitation and data processing techniques to detect ammonia at lower concentrations. A low-cost 405nm blue-ray DVD laser diode was used as the excitation source, providing a narrow band-width (4nm) stimulation that is separated from the emission peak. We measured the emission using a portable spectrometer (Photon Control SPM-002), and processed the data by separating the spectrum into two regions; (A) from 425 nm to 460 nm and (B) from 460nm to 500nm. Next, the integrated emissions under both regions were computed, and the value of shorter wavelength region (A) was subtracted from the longer wavelength one (B). When exposed to ammonia, region (A) reduces overall intensity while region (B) increases, resulting a signal starting from negative value and gradually increases to positive values, enabling the detection of 5ppm ammonia in less than 30 seconds gas exposure.
A compressive-sensing Fourier-transform on-chip Raman spectrometer
Hugh Podmore, Alan Scott, Regina Lee
We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.
Versatile, intelligent multispectral imaging camera made with off-the-shelf components
Pedram Pad, Nemanja Niketic, Amina Chebira, et al.
Multispectral imagers collect a hypercube of data, where the spatial image is along two-dimensions and the spectral information is in the third. Two main technologies are used for multispectral imaging: sweeping, where the hypercube is built by scanning through different wavelengths or spatial positions and snapshot multispectral spectral imaging, where the 3D cube of images is taken in one shot. Sweeping imaging systems tend to have more lines and better spectral resolutions whilst snapshot cameras are often used for dynamic analysis of scenes. A common method to obtain the hypercube in snapshot imagers is by pixel level filtering on the sensor chip. Pixel level filtering, where the filter is placed directly on the pixels are intergrated into the wafer-level making processing making them difficult to customize. Therefore, these sensors tend to aim for equally spaced spectral lines in order to cover many applications. This results in an often in an unnecessarily large data cube when only a few spectral lines are needed, moreover the spectral lines are not adapted to the specific application. In this work we propose a multispectral camera based on plenoptic imaging, where the filtering is done in a front-end optics module. Our camera has the usual advantages of a snapshot imager, and the added advantage that the spectral lines can be both reduced and tailored to the specific application by customizing the filter. This procedure reduces the hypercube whilst keeping performance by selecting the relevant data. Moreover, the filter is interchangeable for different applications The camera presented here is built with off-the-shelf components, shows >40 spectral channels, image sizes are 260x260 pixels, with pixel limited spatial resolution. We demonstrate this technology by fruit quality control using machine learning algorithms.
Fluorescence excitation-emission matrix spectroscopy for degradation monitoring of machinery lubricants
Oleg Sosnovski, Pooja Suresh, Alexander E. Dudelzak, et al.
Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.
Hollow-core fiber sensing technique for pipeline leak detection
Recently there has been increased interest on the part of federal and state regulators to detect and quantify emissions of methane, an important greenhouse gas, from various parts of the oil and gas infrastructure including well pads and pipelines. Pressure and/or flow anomalies are typically used to detect leaks along natural gas pipelines, but are generally very insensitive and subject to false alarms. We have developed a system to detect and localize methane leaks along gas pipelines that is an order of magnitude more sensitive by combining tunable diode laser spectroscopy (TDLAS) with conventional sensor tube technology. This technique can potentially localize leaks along pipelines up to 100 km lengths with an accuracy of ±50 m or less. A sensor tube buried along the pipeline with a gas-permeable membrane collects leaking gas during a soak period. The leak plume within the tube is then carried to the nearest sensor node along the tube in a purge cycle. The time-to-detection is used to determine leak location. Multiple sensor nodes are situated along the pipeline to minimize the time to detection, and each node is composed of a short segment of hollow core fiber (HCF) into which leaking gas is transported quickly through a small pressure differential. The HCF sensing node is spliced to standard telecom solid core fiber which transports the laser light for spectroscopy to a remote interrogator. The interrogator is multiplexed across the sensor nodes to minimize equipment cost and complexity.
Photonic Metrology Instrumentation I
icon_mobile_dropdown
Piezo-based motion stages for heavy duty operation in clean environments
Nir Karasikov, Gal Peled, Roman Yasinov, et al.
A range of heavy duty, ultra-precise motion stages had been developed for precise positioning in semiconductor manufacturing and metrology, for use in a clean room and high vacuum (HV and UHV) environments, to meet the precision requirements for 7, 5 nm nodes and beyond. These stages are powered by L1B2 direct drive ultrasonic motors, which allows combining long motion range, sub-nanometer positioning accuracy, high stiffness (in the direction of motion), low power consumption and active compensation of thermal and structural drift while holding position. The mechanical design, material selection for clean room and high vacuum preparation techniques are reviewed. Test results in a clean room are reported for a two-axis (X-Y) stage, having a load capacity of 30 kg, a motion range of 450 mm, a positioning accuracy of < 1 nm, a maximum motion speed of > 200 mm/s and a < 2 nm position stability (3 sigma). Long term drift compensation to sub-nm level, against thermal drift, has been validated for more than 10 hours.

Heavy duty operation in a high vacuum is exemplified via a single axis stage operating at 5E-7 Torr, having a moving mass of 0.96 kg, oriented against gravity. The stage is operated periodically (up and down) over a travel length of 45 mm. The motion profile has a trapezoidal shape with an acceleration of 1m/s2 and a constant velocity of 100 mm/s. The operational parameters (average absolute position error during constant velocity, motor force, dead zone level) remain stable over more than 370000 passes (experiment duration).
Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results
Ivan Kassamakov, Göran Maconi, Antti Penttilä, et al.
We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15’. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument’s user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically.

To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.
An alternative optical metrology system to classical interferometer for complex optical components (Conference Presentation)
Isabelle Serre, Rafael Mayer
This presentation is a comparison of two technological methods used to test and qualify complex optical components: classical optical interferometry based on Fizeau interferometer and HASO TM Shack-Hartman metrology wavefront sensor with an auto-collimator and its focusing module. Shack-Hartman wavefront sensor consists in a microlens array mounted on a camera (CCD, CMOS, InGaAs sensors) at its focal length. The wavefront will be processed from an integration of all local slopes: the local slopes of the wavefront are calculated by measuring the position of each spot from sub-pupil on the camera. We integrate this metrology wavefront sensor on an optical platform including an auto-collimator (laser diode wavelength to be chosen in the 400 nm to 1100 nm range), a beam-splitter and a focusing module (to be optimised depending on application) so that the system is divergent and can adjust to any optical components size. This system can thus be used on large concave mirror in single pass configuration (standard accuracy of λ/100rms) or transmission optics in double-pass configurations. We will show aberrations cartography of several complex components (biconvex lens, telescope mirror for instance) measured with both technologies, which are fully consistent with Zemax optical simulations software. A big advantage of Shack-Hartman principle is vibration insensitivity, contrary to interferometry. We will emphasize on pros and cons from each technology: wavelength range, chromaticity, price, dimensions, resolution, sensitivity, repeatability, reliability.
A fiber-fed laser interferometer for optical metrology at cryogenic temperatures
David Naylor, Ian Veenendaal, Brad Gom, et al.
Nature is such that observations at far-infrared wavelengths are optimal for exploring both the nearby and distant Universe. The minute amount of energy carried by far-infrared photons, however, requires extremely sensitive instrumentation for their detection. Moreover, the instrumentation itself must be cooled to <4 K to avoid an unwanted photon noise component from self-emission, and often requires precision metrology at these temperatures. A variety of cryogenic metrology techniques have been used successfully on previous space astronomy missions, each having its own limitations. In this paper we present a fiber-based laser metrology system, designed for optical position metrology at cryogenic temperatures.
SHARPeR: a non contact 2D profiling instrument at the nanoradian scale (Conference Presentation)
Guillaume Dovillaire, Rafael Mayer
Synchrotron and Free Electron Laser beamlines new needs require the use of mirrors and gratings with less than 50 nrad rms slope error and less than 1nm height error to reach the diffraction limit at the user wavelength and at the right angle of incidence. In order to manufacture such mirrors and gratings, some new metrology tools have been developed based on beam deflection or interferometry. The new concept of SHARPeR relies on an optical head including a collimator in visible light, a beam expander to image the mirror on a very sensitive Shack-Hartmann wavefront sensor. This optical head is set on a granite table on which the mirror is set and aligned. Some wavefront measurements are acquired as the head is translated among the mirror surface. A stitching algorithm is then used to calculate the mirror height from the small raw data maps while removing the stage defects by analyzing the overlapped areas. Multiple scans have been acquired on the same mirror to evaluate the system sensitivity depending on the external environment (temperature stabilization, air turbulences...). We'll discuss some comparisons done with measurements obtained on some other instruments to conclude on the proven accuracy of this system. With a spatial resolution of 1.2mm, a proven accuracy of less than 100 nrad rms (0.8 nm rms in height) on a 300mm long mirror, with the capability of measuring 1.5m long mirror in less than 30 minutes, SHARPeR has become a new solution for extreme metrology of XRays mirrors.
Photonic Metrology Instrumentation II
icon_mobile_dropdown
Nanoscale hydrogenography of magnesium nanostructures with near-field optical microscopy (Conference Presentation)
Heiko Linnenbank, Florian Sterl, Tobias Steinle, et al.
Magnesium (Mg) has been widely investigated for solid-state hydrogen storage. It is able to absorb up to 7.6 wt % of hydrogen gas, making it one of the most promising candidates for hydrogen storage and also a model system for other energy storage materials. Upon hydrogenation the metallic Mg forms non-metallic magnesium hydride (MgH2), thus its electronic and thereby optical properties are drastically altered. This allows for monitoring the kinetics of the hydrogenation process by easily accessible optical measurements. This technique, termed hydrogenography, has been used to observe the nucleation and growth of MgH2 domains in Mg films. Like all far-field optical methods, however, these investigations suffer from the diffraction limit and thus possess only limited spatial resolution, therefore preventing the direct observation of the hydrogenation process on the nanoscale. Here, we overcome this limitation by employing scattering-type scanning near-field optical microscopy and atomic force microscopy. This technique enables us to map the local dielectric properties at different stages of hydrogenation and dehydrogenation, probing thus the electronic properties and hence the local material composition with a spatial resolution on the order of 10 nm. Upon monitoring the kinetics of hydrogen absorption and desorption in such polycrystalline nanoparticles we reveal that the nucleation of this process progresses within individual crystallites. Our combined measurement techniques additionally corroborate a correlation between structural and electronic properties during this dynamic process. To validate this novel technique we additionally monitor in parallel the far-field scattering spectra of individual nanoparticles, which exhibit plasmonic resonances in the visible spectral range.
Magnetic field detection using magnetorheological optical resonators
Edoardo Rubino, Tindaro Ioppolo
In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of ∼106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.
Model-based estimation and control for off-axis parabolic mirror alignment
This paper propose an model-based estimation and control method for an off-axis parabolic mirror (OAP) alignment. Current studies in automated optical alignment systems typically require additional wavefront sensors. We propose a self-aligning method using only focal plane images captured by the existing camera. Image processing methods and Karhunen-Loève (K-L) decomposition are used to extract measurements for the observer in closed-loop control system. Our system has linear dynamic in state transition, and a nonlinear mapping from the state to the measurement. An iterative extended Kalman filter (IEKF) is shown to accurately predict the unknown states, and nonlinear observability is discussed. Linear-quadratic regulator (LQR) is applied to correct the misalignments. The method is validated experimentally on the optical bench with a commercial OAP. We conduct 100 tests in the experiment to demonstrate the consistency in between runs.
Measurement and alignment of linear variable filters
Rob Sczupak, Markus Fredell, Tim Upton, et al.
Linear variable filters have become a common way to impart wavelength selectivity into optical systems with a minimum of optical elements. Measuring the filter in the presence of steep spectral-spatial gradients is the primary difficulty in characterizing these filters, requiring a small aperture beam resulting in a corresponding loss of signal power. We will discuss our approach to mapping the spectral and spatial distribution of these parts as well as a method to specify these filters. We will also suggest methods to calibrate and align the filters onto a detector, camera or chip.
Comparative analysis of methods and optical-electronic equipment to control the form parameters of spherical mirrors
In this paper we consider two approaches widely used in testing of spherical optical surfaces: Fizeau interferometer and Shack-Hartmann wavefront sensor. Fizeau interferometer that is widely used in optical testing can be transformed to a device using Shack-Hartmann wavefront sensor, the alternative technique to check spherical optical components. We call this device Hartmannometer, and compare its features to those of Fizeau interferometer.
Innovative Photonics Instrumentation III
icon_mobile_dropdown
Polarization analysis of diamond subwavelength gratings acting as space-variant birefringent elements
P. Piron, E. Vargas Catalan, M. Karlsson
Subwavelength gratings are gratings with a period smaller than the incident wavelength. They only allow the zeroth order of diffraction, they possess form birefringence and they can be modeled as birefringent plates. In this paper, we present the first results of an experimental method designed to measure their polarization properties. The method consists in measuring the variation of the light transmitted through two linear polarizers with the subwavelength component between them for several orientations of the polarizers. In this paper, the basic principles of the method are introduced and the experimental setup is presented. Several types of components are numerically studied and the optical measurements of one component are presented.
Parallel polarization state generation and measurement with a single metasurface (Conference Presentation) (Withdrawal Notice)
Noah A. Rubin, Aun Zaidi, Ruo Ping Li, et al.
Publisher’s Note: This conference presentation recording, originally published on 14 March 2018, was withdrawn per author request on 22 March, 2018.
Wide field of view 3D label-free super-resolution imaging
Anton Nolvi , Ivo Laidmäe, Göran Maconi, et al.
Recently, 3D label-free super-resolution profilers based on microsphere-assisted scanning white light interferometry were introduced having vertical resolution of few angstroms (Å) and a lateral resolution approaching 100 nm. However, the use of a single microsphere to generate the photonic nanojet (PNJ) limits their field of view. We overcome this limitation by using polymer microfibers to generate the PNJ. This increases the field of view by order of magnitude in comparison to the previously developed solutions while still resolving sub 100 nm features laterally and keeping the vertical resolution in 1nm range. To validate the capabilities of our system we used a recordable Blu-ray disc as a sample. It features a grooved surface topology with heights in the range of 20 nm and with distinguishable sub 100 nm lateral features that are unresolvable by diffraction limited optics. We achieved agreement between all three measurement devices across lateral and vertical dimensions. The field of view of our instrument was 110 μm by 2 μm and the imaging time was a couple of seconds.
Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization
Bertrand Chambion, Christophe Gaschet, Thibault Behaghel, et al.
Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8’’ format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.
Innovative Photonics Instrumentation IV
icon_mobile_dropdown
C-RED One and C-RED2: SWIR high-performance cameras using Saphira e-APD and Snake InGaAs detectors
Jean-Luc Gach, Philippe Feautrier, Eric Stadler, et al.
After the development of the OCAM2 EMCCD fast visible camera dedicated to advanced adaptive optics wavefront sensing, First Light Imaging moved to the SWIR fast cameras with the development of the C-RED One and the C-RED 2 cameras.

First Light Imaging’s C-RED One infrared camera is capable of capturing up to 3500 full frames per second with a subelectron readout noise and very low background. C-RED One is based on the last version of the SAPHIRA detector developed by Leonardo UK. This breakthrough has been made possible thanks to the use of an e-APD infrared focal plane array which is a real disruptive technology in imagery. C-RED One is an autonomous system with an integrated cooling system and a vacuum regeneration system. It operates its sensor with a wide variety of read out techniques and processes video on-board thanks to an FPGA. We will show its performances and expose its main features.

In addition to this project, First Light Imaging developed an InGaAs 640x512 fast camera with unprecedented performances in terms of noise, dark and readout speed based on the SNAKE SWIR detector from Sofradir. The camera was called C-RED 2. The C-RED 2 characteristics and performances will be described.

The C-RED One project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 673944. The C-RED 2 development is supported by the "Investments for the future" program and the Provence Alpes Côte d'Azur Region, in the frame of the CPER.
Authentication via wavefront-shaped optical responses
Authentication/tamper-indication is required in a wide range of applications, including nuclear materials management and product counterfeit detection. State-of-the-art techniques include reflective particle tags, laser speckle authentication, and birefringent seals. Each of these passive techniques has its own advantages and disadvantages, including the need for complex image comparisons, limited flexibility, sensitivity to environmental conditions, limited functionality, etc. We have developed a new active approach to address some of these short-comings. The use of an active characterization technique adds more flexibility and additional layers of security over current techniques. Our approach uses randomly-distributed nanoparticles embedded in a polymer matrix (tag/seal) which is attached to the item to be secured. A spatial light modulator is used to adjust the wavefront of a laser which interacts with the tag/seal, and a detector is used to monitor this interaction. The interaction can occur in various ways, including transmittance, reflectance, fluorescence, random lasing, etc. For example, at the time of origination, the wavefront-shaped reflectance from a tag/seal can be adjusted to result in a specific pattern (symbol, words, etc.) Any tampering with the tag/seal would results in a disturbance of the random orientation of the nanoparticles and thus distort the reflectance pattern. A holographic waveplate could be inserted into the laser beam for verification. The absence/distortion of the original pattern would then indicate that tampering has occurred. We have tested the tag/seal’s and authentication method’s tamper-indicating ability using various attack methods, including mechanical, thermal, and chemical attacks, and have verified our material/method’s robust tamper-indicating ability.
A portable non-contact displacement sensor and its application of lens centration error measurement
We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with ±30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.
Poster Session
icon_mobile_dropdown
Spectral imaging spreads into new industrial and on-field applications
Numerous recent innovative developments have led to a high reduction of hyperspectral and multispectral cameras cost and size. The achieved products – compact, reliable, low-cot, easy-to-use – meet end-user requirements in major fields: agriculture, food and beverages, pharmaceutics, machine vision, health. The booming of this technology in industrial and on-field applications is getting closer.

Indeed, the Spectral Imaging market is at a turning point. A high growth rate of 20% is expected in the next 5 years. The number of cameras sold will increase from 3 600 in 2017 to more than 9 000 in 2022.
Multiple-aperture optical design for micro-level cameras using 3D-printing method
Wei-Jei Peng, Wei-Yao Hsu, Yuan-Chieh Cheng, et al.
The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.
Photonic-based liquid level transmitter using Mach-Zehnder interferometer for industrial application
In the present scenario the process control industries mainly uses 1-5 Volt or 4-20 mA protocol for transmitting the measured signal to remote location operators. These types of protocol prone to interference and limited data transfer rate. To overcome these types of limitation we proposed photonic based transmitter for liquid level measurement which will enhance data transfer rate and interference reduction to eliminate noise signal in the channel during transmission to make transmission more reliable, accurate and consistent in performance. The required mathematical derivation and the principle of operation of the transmitter are shown in the paper.
Implementation of webcam-based hyperspectral imaging system
Ali Balooch, Majid Nazeri, Hamed Abbasi
In the present work, a hyperspectral imaging system (imaging spectrometer) using a commercial webcam has been designed and developed. This system was able to capture two-dimensional spectra (in emission, transmission and reflection modes) directly from the scene in the desired wavelengths. Imaging of the object is done directly by linear sweep (pushbroom method). To do so, the spectrometer is equipped with a suitable collecting lens and a linear travel stage. A 1920 x 1080 pixel CMOS webcam was used as a detector. The spectrometer has been calibrated by the reference spectral lines of standard lamps. The spectral resolution of this system was about 2nm and its spatial resolution was about 1 mm for a 10 cm long object. The hardware solution is based on data acquisition working on the USB platform and controlled by a LabVIEW program. In this system, the initial output was a three-dimensional matrix in which two dimensions of the matrix were related to the spatial information of the object and the third dimension was the spectrum of any point of the object. Finally, the images in different wavelengths were created by reforming the data of the matrix. The free spectral range (FSR) of the system was 400 to 1100 nm. The system was successfully tested for some applications, such as plasma diagnosis as well as applications in food and agriculture sciences.
Tuneable powerful UV laser system with UV noise eater
The present work for the first time presents the study of a laser system delivering into the fibre up to 250 mW of CW radiation tuneable across the 275–310-nm range with the output line width less than 5 GHz and stability of UV output power within 1%. This system can automatically set the output radiation wavelength within the range of 275–310 nm to the precision of 2 pm. UV output power stabilisation is provided by a newly proposed by the authors noise eating technology. This paper discusses details of the developed technology and the results of its application.