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ABSTRACT

Coupled waves are used in many fields of modern optics: volume holograms, Bragg reflectors, acousto-optic modulators,
waveguide couplers, distributed feedback lasers, polarization effects in optical fibers and liquid crystals, non-linear optics,
parametric amplifiers and oscillators, 4-wave mixing, etc. First, the general concept of coupled waves is introduced for any
kind of perturbation (spatial and temporal) of the dielectric polarization within an optical medium. The result is a general form
of coupled wave solutions. Second, the particular topics mentioned above are treated by introducing the special conditions for
the basic modes to be considered (plane waves, guided waves, optical polarizations) and the physical effects relating the
induced perturbation of the dielectric polarization to the electrical field (spatial and temporal variation of refractive index,
absorption or birefringence, non-linear optical effects, etc.). This approach puts the emphasis on teaching concepts rather than
presenting particular effects. The fundamental role of phase-matching (Bragg) and the similarities of the solutions for different
physical effects emerge clearly.

Keywords: coupled waves, phase-matching, volume holograms, acousto-optic modulators, waveguide couplers, polarization
effects in optical fibers, non-linear optics

1. INTRODUCTION

Coupled waves are used in many fields of modern optics: volume holograms, Bragg reflectors, acousto-optic modulators,
waveguide couplers, distributed feedback lasers, polarization effects in optical fibers and liquid crystals, non-linear optics,
parametric amplifiers and oscillators, 4-wave mixing, etc. In optics textbooks and courses, the coupled wave approach is
usually introduced ad hoc when needed in one of the particular chapters mentioned above.!+2 A few years ago I started a course
on coupled waves in modern optics.

First, the general concept of coupled waves is introduced for any kind of perturbation (spatial and temporal) of the
dielectric polarization within an optical medium. Assuming that a set of orthogonal solutions (modes) is known for the
situation without perturbation, a general form of coupled wave solutions can be developed. In the case of weak coupling
(negligible second derivatives) these solutions take the form of projection integrals (generalized scalar products) of the
dielectric perturbation and the electrical field of the considered modes.

Second, the particular topics mentioned above are treated by introducing the special conditions for the basic modes to be
considered (plane waves, guided waves, optical polarizations) and the physical effects relating the induced perturbation of the
dielectric polarization to the electrical field (spatial and temporal variation of refractive index, absorption, birefringence, non-
linear optical effects, etc.). The well know solutions for different boundary conditions are then developed and discussed.

This approach puts the emphasis on teaching concepts rather than presenting particular effects. The fundamental role of
phase-matching (Bragg) and the similarities of the solutions for different physical effects emerge clearly. Coupled mode
equations are also well suited for numerical evaluation. These are the reasons why I believe that introducing coupled waves as
a concept in modern optics is most adequate for education in optics at a university level.

2. THE CONCEPT OF COUPLED WAVES

The concept of coupled waves is used to describe the propagation of optical waves in a dielectric medium which can be
characterized by any kind of perturbation (spatial and temporal) of the dielectric polarization with respect to a basic situation
with known solutions. The concept of coupled waves is a method to find (approximate) solutions of the wave equation (for
the electric field vector) assuming a perturbation induced by the dielectric polarization of the medium. In the following, a
general form of coupled wave solutions will be developed for the case of weak coupling.
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2.1 Wave propagation in a dielectric medium
Light as an electro-magnetic wave is described by the propagation of the electric and the magnetic field vectors E(x,t) and
H(x,t) in space x and time t. The starting point are Maxwell's equations

rot E+B =0, divB =0, divD=p, rot H=D +i, 6}

where p(x,t) and i(x,t) are the electric charge and the current density. The electric and magnetic displacement field vectors
D(x,t) and B(x,t) are in general given by

D(x,t) = ggE(x,1) + P(x,1), B(x,t) = po[H(x,t) + M(x,1)], ()]

where P(x,t) and M(x,t) are the dielectric and the magnetic polarizations of the medium, respectively, and £ and g are the
electric and the magnetic permeabilities of the vacuum.

A transparent dielectric medium is characterized by p =0, i =0, M = 0, and D = &gE + P. From Maxwell's equations (1)
we get then the wave equation for the electric field vector in the general form

AE(x,t) = pogoE(x,t) +poP(x,1). 3)

The dielectric polarization P(x,t) is now considered to be composed of two parts: Pg(x,t) for which at least some solutions of
the wave equation are known and a perturbation p(x,t). This perturbation is supposed to be weak, i.e. Ip(x,t)l << gglE(x,t)l.
In an originally isotropic and linear material, P(x,t) can be written as

P(x,t) = Po(x,t) + p(x,t) = g9 x(x) E(x,t) + p(x,t), (C))
where % (x) is the electric susceptibility. Inserting P(x,t) into Eq. (3) and using the relations c2 = 1/upgp and &(x) = 1 + ¥(x)
yields

AE(x,t) - (1/c)? &(x) E(x,1) = pop(x,1). ®

Equation (5) describes the wave propagation in a medium with perturbation p(x,t). Without perturbation, Eq. (5) becomes

AE(x,t) - (1/c)2 g(x) E(x,t) = 0, ©)
where €(x) may represent the refractive index of a homogeneous material or the profile of a wave guide or an optical fiber.

2.2 Solution of wave propagation by coupled modes

It is now assumed, that at least some solutions of the wave equation without perturbation (6) are known and that they can be
described as modes propagating in the z-direction of a Cartesian coordinate system (Fig. 1). These modal solutions of Eq. (6)
are of the form

En(x,) = Up(x,y) e (@t ~Pn2) D

A X,y The electric field distribution U(x,y) of the modal solutions are independent of z

and the relations between the propagation constants By, and the angular frequencies

p(x,t) oy are given by Eq. (6). Typical solutions are plane waves and modes of optical
wave guides and fibers.

The coupled wave approach assumes now, that the electric field E(x,t) in the
perturbed medium can be obtained by a linear superposition of an appropriate
selection of N basic modes, namely

VA N N .
> ExD) = Y, Ay@ Eqx) = Y An@) Un(ry) ¢ @t Po2) @®
n=1 n=1

Fig. 1 Geometry for coupled mode where A (z) are complex coefficients describing the amplitudes and phases of the
solution. different coupled modes Ey,.
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Introducing now Egq. (8) into Eq. (5) yields

dA, 0E, d2A . .
E , [AnAEn +2 R =R R, - (1/c)2e(x)AnEn] = Hop(X,1). )
— & oz dz

Because the modes Ey, satisfy the wave equation without perturbation (6), Eq. (9) reduces to

dA, 0E, d2A . dA d2A -
D ] 3 [ 8] i ®
n=1

n=1

2.3 Orthogonality of the selected modes
Assuming orthogonality of the N selected modes Ep(x,t), Eq. (10) can be separated into a set of N differential equations for
the amplitudes Ap(z). The general expression for the orthogonality reads

T [+ . T . o0
% f dt|  dxdy Eqet) Ex.t) = e iPn-Bm)z ,IT J R j dxdy Up(xy) UX(xy) = Winmn, (1)
0 —o0

—o0 0

where T is the integration time and Wy, is the value of the normalized energy of each mode. There are two possibilities to
fulfill Eq. (11): either the frequencies of the modes are different (wp#wm) or the modes are spatially orthogonal (i.e., Up(x,y)
and Up(x,y) are orthogonally polarized or the shape of the modes is orthogonal). Using the orthogonality relation (11) we get
from Eq. (10) a set of N differential equations

o dAm d?Am_ po oo T it -
2B+ d22m=TWm olPmz f dx dy Odt Un(xy) €19m! p(x,0). (12)

In the case of weak coupling, defined by

dAn 1 d2An A dZAm
— >> T =
& Bm dz2 ~ 2mnp dz2

, 13)

the second derivatives of Ay, in Eq. (12) can be neglected. This condition is easily fulfilled in many situations, because it
means only that the relative change of dAp,/dz over an optical wavelength A/ng in the medium is small. The final form of the
N coupled wave equations becomes then

dAg ipo iBnz f Hee f T —ipt y1* -
o 20 dxdy| dte i®n , ).
dZ 2vaan € - y 0 € Un(x y) P(x t) (14)

The physics of the medium is expressed by the relation between the perturbation of the dielectric polarization p(x,t) and the
total electrical field E(x,t), which can formally be written as

N N .
p(x.t) = F{E(x,0} = F{ ZlAn(z) Enxt) } = F{ zlAn(z) Un(xy) e @ntBndy as)
n= n=

where F{-} is an appropriate functional relation to describe the physics. Now it becomes clear, that the N differential equations
for the Ap(z) in (14) are coupled through the perturbation p(x,t).

In the case that all modes have the same optical frequency (w, = ®) and F{E(x,t)} is linear, p(x,t) can be written as
P(X.t) = pe(x)e!®t and Eq. (14) reduces further to

dA, _ie%ug

iBnz +ee *
& 2WpBy L»dxdy Un(x.y) pe(x). 6

281



282

The integral in Eq. (16) corresponds to a general projection of the perturbation p(x) onto the n-th mode, which is also
known as the scalar product of the two functions. This scalar product involves vectors and complex valued functions of the
space coordinates x and y.

3. EXAMPLES OF COUPLED WAVE EQUATIONS

In the following, some typical examples for the application of the coupled wave concept will be presented: volume
holograms, acousto-optic modulators, waveguide couplers, polarization effects in optical fibers, and non-linear optics. First,
we have to establish the expression for the perturbation p(x,t) in each case from the physical properties of the medium. Then,
we have to choose a minimum number of appropriate modes E,(x,t) of the wave equation without perturbation. The result is
a set of coupled differential equations for the amplitudes Ay(z), which can be solved by analytical or numerical integration for
specific boundary conditions.

3.1 Refractive index and absorption (loss or gain)
The medium without perturbation is transparent, homogenous and isotropic, characterized by &(x) = no The perturbation is
caused by a change Ag of the dielectric constant and an electric conductivity 6, which yields

. ©
px,t) = EO(Ae-— i 0)80) E(x,t) a7
for monochromatic light at frequency . As solution without perturbation we choose a single plane wave
E1(x,0) = U el@t-B12) with B1 = nok = nO% : (18)
Following Eq. (8), the solution with perturbation becomes then
E(xt) = A1(2) E1(x.0) = Aj(2) U el @P12), (19)
from which we get through Eq. (14) or (16) the coupled wave equation

dA;  ipgegw? . o ) * ik ( )
=l B0 (Ae—i—-) A1) [dxdy UTU] [dt=-—— A€—l_ A1), 20
& = 2TngkW, oeg) Al@ [ &y UTU, TJ g 12) (20)

because the time integral is equal to T and the space integral is by definition equal to the normalized energy W1, which
happens to be infinity in this case of a plane wave as mode. Integration of Eq. (20) with Aj(z=0) = 1 yields

ik . O
m@=exp{ -2 (ae-i2)2 21
1@ exp{ 2ng v } @
and finally for the solution of the electric field with perturbation
ko Ag
E(x,0) = Uj exp{— Tmeos z} exp{ [(ot - k(no + zno)z]} . 22)

Equation (22) represents again a plane wave, but with an energy absorption o and a changed refractive index n = ng + An,
given by

a = ko/ngeg® and An = Ae/2ng. (23)

The relations (23) can be used to represent the effect refractive index variations, An(x,t), and loss or gain, a(x,t), by the
corresponding perturbation p(x,t) of the dielectric polarization of the medium.

3.2 Phase gratings (volume holograms) 3,4

Kogelnik has presented in 1969 a coupled wave theory for all types of thick hologram gratings. Here, we shall limit ourselves
for the sake of simplicity to pure phase gratings. The extension to gratings with absorption (or gain) is straight forward. The
thick phase grating is given by a spatial modulation of the refractive index



R(z) n1(x) = An cos(Kx). 24)

The grating vector K is oriented perpendicular to the fringe planes and is
of length K = 2m/A, where A is the period of the grating (Fig. 2).

\ Following Egs. (17) and (23), the corresponding perturbation is

S(z) p(x,t) = 2egngAn cos(Kx) E(x,t). 25)

The medium without perturbation is transparent, homogenous and
7=0 d 7 isotropic, characterized by €(x) = n. As solutions without perturbation
we choose two plane waves with wave vectors kg and k; (Fig. 2) and the
same frequency ® = Wg = Wy, Which are represented by

Fig. 2. Geometry for coupled waves through a

thick phase grating K.
Es(x,0) = ug el (O~ KsX) =y omikexm) oi(@-Bsz) g = (i), = ngks, = ng (/o) s, (262)
Er(x,t) = up ol (@1~ KO =y o iKXED (10 -Br2), Br = (kp)z = no k7 = ng (@/c) 1z, (26b)

where ug and u; are the unity polarization vectors and s and r the unity direction vectors of the two plane waves, respectively.
The index H refers to the hologram plane, which is the plane perpendicular to the z-axes (xy L z), and the index z indicates
the z-component of the corresponding vector. The two selected modes Eg(x,t) and Er(x,t) are orthogonal in the sense of Eq.
(11), as long as kg # k.

Following Eq. (8), the solution with perturbation can be written as
E(x,t) = S(z) Eg(x,t) + R(z) E(x,t), X))
from which we get through Eq. (14) or (16) for R(z) the differential equation

R __ikAn ei(BrZ)Idx dy u; elKrXH) ¢os5(Kx) [ur R(z) e~ 1K) ug S(z) e‘i(ksx)]
d Wir,
- lg,Al: ur ug S(Z) ei(Br—Bs)Z[e—iKzZJ'dxdyei(kr—ks—K)XH + eiKzZIdXdy ei(kr—ks‘fK)xH]. (28)
r‘z

Non-vanishing integrals are only obtained if either (k;~ks—K)xyg = 0 or (k—ks+K)xyg = 0, which means that either the
projection (k—ks—K)H or (k—ks+K)H onto the hologram plane (x,y) has to be zero. Choosing

(krks-K)p =0 29

corresponds to selecting the +1st order of diffraction from the thin grating cos(Kxy). We conclude, that the coupled wave
concept includes inherently the condition for diffraction. However, there remains in Eq. (29) a phase mismatch Ak in
the z-direction, which is

Ak = (Br - ﬁs ~Kz) = (kr — kg — K),. (30)

Using this phase mismatch Ak, we get finally for the two coupled wave equations

dR _ ikurgAn +iAkz ds ikupsAn
& 2, SBe ’ -

—_ —~rsa —iAkz
& 25, R(z)e ) (€2))
where urs = usug depends on the polarization of the coupled waves. As we see from Eq. (31), we get maximum transfer of the
energy while integrating along the propagation direction z if Ak = 0, which is known as Bragg condition. Fulfilling the
condition for diffraction and the Bragg condition corresponds to the conservation of the total momentum, (k; — kg — K) = 0.

Solving the coupled wave equations (31) with appropriate boundary conditions leads to the well known relations for the
diffraction efficiency of phase holograms in transmission or in reflection (Lippman holograms, Bragg mirrors).

3.3 Acousto-optic modulator 5-6
An acoustic wave of frequency Q and wave vector K induces a traveling phase grating
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n1(x) = An cos(Qt — Kx) (32)
in the material. Following Eqs. (17) and (23), the corresponding perturbation is

p(x,t) = 2egngAn cos(Qt — Kx) E(x,t). (33)

The medium without perturbation is assumed to be transparent, homogenous and isotropic, characterized by &(x) = n%).

Compared with the phase grating of the volume hologram in Eq. (24), the acoustic wave brings an additional time
variation into the perturbation p(x,t). Therefore, we choose as solutions without perturbation two plane waves

Eg(x,t) = ug el(@st ~Ks¥) =y o=ilkexp) gilst—Bsz) Bs = (Ks); = noks; = ng (@g/c) s, (34a)
Er(x.0) = up ol(0rt =Kr0) =y o~ ket) ¢i(0t=Bro) Br = (ke = nokrz = no (@) sz, (345)

with different frequencies ws and @y, respectively. The two selected modes Eg(x,t) and Ey(x,t) are again orthogonal in the
sense of Eq. (11).

Following Eq. (8), the solution with perturbation can be written as
E(x,t) = S(z) Es(x,t) + R(z) Er(x,1), (35)
from which we get through Eq. (14) for R(z) the differential equation

R

i An ; —i(et — 92
. = “LO—T’SWO’:%—E elBr)fax dy Tj dtu, e (@t —krxp) 3 { cos(Qt-Kx) [R(z) Ex(x.t) + S(z) Es(x.t)] }

ipoEQUrsAn i -iK i(k—k¢-K i
= 2TWrrksrz S(z) elBrBs)z [(O)S+Q)2e 1K72(4x dy el(krks—K)xH ’IJ: dtel(@s—@r+Q)t

+ (ms_Q)Z eiKZZde dy ei(kr—ks+K)XH J’dtel((os—(or—'g)t]‘ (36)
T

Compared with a stationary phase grating, like in a volume hologram, an additional condition for the frequencies has to be
fulfilled to get non-vanishing integrals in Eq. (36). The two possibilities are

+1st order diffraction: (kr—k—K)y=0 and (0~0s—Q) =0, (37a)
—Ist order diffraction:  (kkg+K)y=0  and (0—~0wg+Q) = 0. (37b)

The condition for the frequencies corresponds to the Doppler shift due to the traveling acoustic wave grating. We conclude,
that the coupled wave concept includes also the conservation of the energy in the photon-phonon picture. However,
there remains in Eq. (29) a phase mismatch Ak in the z-direction, which is

Ak = (Br - Bs — Kz) = (kr — ks - K)3. (38)
Using this phase mismatch Ak, we get finally for the two coupled wave equations

d_R _ 1kAn S(Z) e+iAkZ , %% - _%‘1 R(Z) e—iAkZ , (39)

&~ 2
where we have assumed that ugg = upug = 1, IKl << k, and Q << . Equation (39) is similar to Eq. (31). As we see from Egq.
(39), we get maximum transfer of the energy while integrating along the propagation direction z if Ak = 0, which is again the
well known Bragg condition. Fulfilling all conditions for diffraction and the Bragg condition corresponds to the
conservation of the total momentum, (ky — kg — K) = 0 and the energy (0—~®s—Q) = 0 in he photon-phonon picture.

3.4 Coupled waves in integrated optics ’

As an example of coupled waves in integrated optics we take the coupling between two parallel rectangular wave-guides on a
planar substrate, as shown in Fig. 3. We assume that the wave-guides are single mode. As the solutions without perturbation
we consider the fundamental TE mode Ej(x,t) in the first wave-guide, ny(x), and the fundamental TE mode E5(x,t) in the
second wave-guide, np(x), respectively. The direction of propagation is z and the confinement in the y-direction is neglected.



An 1(%) n, (x) Therefore, the two selected modes are represented in the scalar form
” ”

- - i —
, Rty Eixd) = Uy @P12 g =Ny, (40a)
1 < Lo
e .S Ea(x,0) = Upn) @P29 g, =Ny, (40b)
1, (X) where the mode shapes, U1(x) and Up(x), and the effective refractive
* 2 _ny (X) indices, N1 and N3 are obtained from wave-guide theory.
rd ”
7 ” P The perturbation for the solution Ej is the presence of the guide
I r P < X na(x) and vice versa,3 which leads to
L . td
'
x,t) = 29| N1 na(x) E1(x,t) + No n1(X)Es (x,t)], 41
Fig. 3. Geometry for the coupling between to pCx.D olN1 ma() E1(x.0) 2m(E; (0] “1)
parallel rectangular wave-guides. where the relation Ae = 2ngAn from Eq. (23) has been used.

Following Eq. (8), the solution with perturbation can be written as

E(x,1) = A1(2) E1(x,1) + A2(z) E2a(x,1), 42)
from which we get through Eq. (14) or (16) the coupled wave equations

dA ikAN ikAN i dA: ikAN ; ikAN

Sr=-t5 A T R Ay dPiboz S RO ) BBz SRR 00, w3

& 2 & 2
with the coupling integrals
-2 2 _2No
ANy = Wi jdxnz(x)Ul(x), AN12 =NjW) | & Up(x) n1(x) Ua(x) etc. (44)

Again the find a phase mismatch term AB = B1—B2, which governs the transfer efficiency during propagation (integration
along z). The coefficients AN and AN3> introduce a change of the effective refractive index (AN = AN11/2), as discussed
in chapter 3.1. The coefficients AN12 and AN are responsible for the energy transfer between to waveguides, similar to the
coupling by a phase grating discussed in chapter 3.2.

3.5 Polarization effects in optical fibers 9,10

An ideal optical fiber has perfect circular symmetry. The polarizations are completely degenerate. Imperfections during the
fabrication process may introduce anisotropies, which are mostly of a linear or Cartesian type. Sometimes, large linear
anisotropies are introduced on purpose, either by modified core geometry or by mechanical stress, to get linear polarization
maintaining fibers, also called high-birefringence or hi-bi fibers. Bending and squeezing optical fibers does also introduce
linear birefringence. Rotational effects of polarization occur in twisted fibers (mechanical torsion) and due to the Faraday
effect. Coupled wave theory is most adequate to study the changes of polarization of light propagating in single-mode fibers
caused by perturbations of geometry or material properties. To describe the superposition of different perturbations it is most
suitable to represent each perturbation locally by its respective dielectric tensor. This approach is also well adapted for
numerical solutions in the case of arbitrarily distributed perturbations along the fiber.

For a linear birefringence, the perturbation is given by the dielectric tensor

Agy Agg O Agq = npgAn(x) cos{2¢(z)},
Ae(z) = | Aeg Aey O with Agy = —npAn(x) cos{2¢(z)}, 45)
0 0 O Agg = npAn(x) sin{2¢(z)},

where An is the difference of the refractive index for the slow and the fast axes of the birefringence and ¢ is the orientation of
the slow axis with respect to the x-axis. As indicated in Eq. (45) the birefringence An and the orientation ¢ may change along
the fiber axes z. In the case of a spun fiber (birefringent fiber spun during the drawing process), ¢(z) = oz, where o is the
spun rate, and An is constant. In the case of linear anisotropy introduced by bending or squeezing an optical fiber, one gets Ae
from evaluation of the photo-elastic or piezo-optic effect.

Optical activity, or circular birefringence, is produced in optical fibers by mechanical torsion as a result of twisting the
fiber. The perturbation is then given by the dielectric tensor
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0 0 Asgs
Asxy)=| 0 0 Aeg with  Aeg=njgTtx ad  Aes=nigty, (46)
Aes Agq O
where T = d0/dz is the mechanical torsion and g is the elasto-optic coupling coefficient (g = 0.16 for silica fibers). Note that

the components Ag4 and Ags increase with the distance from the center of the fiber.

The Faraday effect is an optical activity induced by the component of a magnetic field in the direction of the light
propagation. The corresponding perturbation is given by the dielectric tensor

0 (Agg)™ 0
Ae=|Agg O 0 with Agg = 2ingVH,/k, Cy))
0 0 0

where V is the Verdet constant and H is the magnetic field component along z.

In weakly guiding single-mode fibers with circular symmetry the electric field distribution can be approximated by two
orthogonal linearly polarized modes of the form

U(r) 0
Uixy) = 0 H U2(XvY) = U s (48)
= (/B) cosep dU/dr — (i/B) sin¢ dU/dr

with x = cos@ and y =r sin@. These modes are chosen as the two orthogonal solutions without perturbation. Note that both
modes have also a longitudinal component, which turns out to be important for the calculation of the optical activity induced
by mechanical torsion. The radial distribution U(r) can be sufficiently well approximated for most fiber profiles by a
Gaussian.

Following Eq. (8), the solution with perturbation can now be written as

E(x.0) = A1) Us(xy) € @B 4 ay0) Uniny) 1@B2) (49)

where B = ngk and ng is the effective index of refraction of the fundamental mode in the fiber without perturbation. From
Eq. (49) we get through Eq. (14) or (16) for the amplitudes A1(z) and Ay(z) the coupled wave equations

2
dAy/dz= Y, iknm(z) Am(2) (50)

n=1
with the coupling coefficients

Knm(@) = 5y JOxdy Un(x3) Ae(x.y.2) Un(xy) 1)

Integrating Eq. (50) with appropriate initial conditions allows to calculate the development of a particular input polarization
all along the fiber length z. The perturbations are given through the dielectric tensor Ag, which may in general depend on x, y
and z. It can be shown,? that the Jones N-matrices!! are related to the coupling coefficients of Eq. (51) by Ny = ikpm. If
several perturbations are present simultaneously, the corresponding coupling coefficients are obtained by linear superposition.

3.6 Nonlinear optics (parametric coupling) 12,13
The nonlinear dielectric polarization in a birefringent crystal can be described by

2
piCx.D) = €0 X Ex(x.0) En(,0), (52)
where X(ii)n is the second-order susceptibility tensor. The summations in Eq. (527) run over all three components (k,n) of the

electric field vector E(x,t). The medium without perturbation is a birefringent crystal. For a given direction of propagation
there are always to orthogonal linear polarizations (eigen-polarizations) which propagate independently and are characterized by
two different indices of refraction. We shall therefore choose as solutions without perturbation three collinear plane waves



Ep(x,0) = upy el(@mt—Bm?2), Bm = Ny ®m/c, m=123, (53)

corresponding to these eigen-polarizations up, but at different optical frequencies ®p. Note that whenever nonlinear effects
are involved, we have to consider the electric field E(x,t) as a real valued (physical) quantity. Therefore, the solution with
perturbation takes the form

3
E(x.1) = %Z[AmmEm(z,t) + AmEn@)] (54)
m=1

from which we get through Eq. (14) and after spatial integration for the amplitude A3(z) the differential equation

dA3 _ iMoo iBsz @) i3t 9% n =

“&  2TP3 P32 fauy;fine ™ o2 Ex@ ) En(z0)], Lk, = x,y,2, G5
where Ei(z,t) and Ep(z,t) are the components of the electric field vector E(x,t) in Eq. (54) and u3; are the components of the
polarization vector u3. Similar equations are also obtained for Aj(z) and Ay(z).

From the products Eg(z,t) En(z,t) we get all possible combinations of the frequencies Wy 0]1+®2, W2+®3, W3+01;
®]-m3, -3, M3—); etc. All these frequencies are present in the non-linear dielectric polarization p(x,t). Non-vanishing
integrals over the time in Eq. (55) are only obtained when ®3 is equal to one of these sum- or difference-frequencies. We
choose @3 = ®] + wy, which leads to the coupled wave equations

dA}/dz = —(i®1/2n1c)K123 A3 A3 elAkZ,
dAy/dz = —(imy/2noc)kp13 AT Az eldkz, (56)
dAs/dz = —(im3/2n3c)k312 A1 Ag e 1AKZ,
with the phase mismatch term
Ak = B + B2 ~ B3 = (m®@1 + nw3 - n303)/c and 0] + 0 - 03 =0, (57

The nonlinear coupling coefficients Kap¢ are given by

Kabc = Uai X(ii)nubk Ucn » abc =123, i.k,n = x,y,z, (58)

where ugaj, upk, and ucp are the Cartesian components of the eigen-polarization vectors ug, up, and uc of the three coupled
waves, respectively. A triple sum is taken over i, k, and n. The equations (56) are the basic relations describing nonlinear
parametric interactions.

4. CONCLUSIONS

We have developed the general concept of coupled waves to describe the propagation of optical waves in a dielectric medium
which can be characterized by any kind of perturbation (spatial and temporal) of the dielectric polarization with respect to a
basic situation with known solutions. The concept of coupled waves is a powerful method to find (approximate) solutions of
the wave equation (for the electric field vector) assuming a perturbation induced by the dielectric polarization of the medium.

Then, we have presented some typical examples for the application of the coupled wave concept: volume holograms,
acousto-optic modulators, waveguide couplers, polarization effects in optical fibers, and non-linear optics. First, we had to
establish the expressions for the perturbation in each case from the physical properties of the medium. Then, we had to choose
a minimum number of appropriate modes of the wave equation without perturbation. The result is a set of coupled differential
equations for the amplitudes of these modes, which can be solved by analytical or numerical integration for specific boundary
conditions.

This approach puts the emphasis on teaching concepts rather than presenting particular effects. Conservation of
momentum (k, diffraction) and energy (®, photons) is intrinsic. The fundamental role of phase-matching (Bragg) and the
similarities of the solutions for different physical effects emerge clearly. Coupled waves are based on the concept of modes,
which allows to find eigen-functions (supermodes) for the wave propagation in the medium with perturbation. Coupled mode
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equations are also well suited for numerical evaluation. The presented concepts of coupled modes, with a minimum number of
basic modes and in the approximation of weak coupling, can be extended to more accurate solutions (e.g. rigorous diffraction
theory). These are the reasons why I believe that introducing coupled waves as a concept in modern optics is most adequate
for education in optics at a university level.
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