The NEXT:
OLEDs, the Next Light Source

Peter Visser
OLLA project manager, Philips Lighting, Aachen Germany
p.visser@philips.com

Overview

- Solid State Lighting
- OLED technology basics
- The OLLA project
- OLED Development status & issues
- Shaping the OLED industry
Solid State Lighting

= Direct conversion of energy into visible light

Pure Controlled Efficient

> The route towards more efficient lighting

Family of Solid State Lighting:

- **LEDs:** Light Emitting Diodes (LED), point sources.
- **OLEDs:** Organic Light Emitting Diodes, area sources.
- **Lasers:** Ultra high brightness line sources.
Basic OLED technology

- Metal cathode
- Organic layer(s)
- Glass substrate
- ITO
- Light

Example of OLED stacking

- Total layer thickness: 100-200 nm
The OLLA project

Organic emitting material types

<table>
<thead>
<tr>
<th>Polymers</th>
<th>Small Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficult to make</td>
<td>Easier to make</td>
</tr>
<tr>
<td>Easy to process</td>
<td>Difficult to process</td>
</tr>
<tr>
<td>(solution processing)</td>
<td>(vacuum processing)</td>
</tr>
</tbody>
</table>

OLED lighting: application advantages

- Thin, flat, lightweight
- Large area diffuse source
- Pleasant, broad spectrum light
- Variable in color and form (any2D)
- Instant-on; fully dimmable
- Robust (no wires inside)
- Low voltage technology
- Green product (RoHS compliant, recyclable, no hazardous materials used)
- Long lifetime (>20,000 hours)
- No heat management support needed

Potentially cheap and very efficient
Optional: flexible, transparent
The OLLA project

Why OLED lighting?
And they look great!

Siemens

The Lighting challenge: white OLEDs

Already achieved OLED records
- >133 lm/W in green
- >10^6 cd/m^2
- > 50,000 h Very low luminance
- >10,000,000 h Very low luminance

Lighting market entry requirements
- 1.000 cd/m^2
- CRI > 80
- >10,000 h
- > 50 lm/W
- White

+ Reasonable price level
The OLLA project

High Brightness Organic Light Emitting Diodes for ICT & Lighting Applications

Project characteristics

EU funded integrated project
Programme: EU-FP6-IST priority
Duration: 45 months
October 2004 – June 2008
24 partners from 8 countries
Budget: 20 Mio Euro / 12 Mio funding

Central focus:
- OLEDs for Lighting Applications
The OLLA project

OLLA

RUG - Groningen
HC Starck, Leverkusen
Merck Oled Materials Uni - Kassel
Sensient Tech - Wolfen
VTT - Oulu

Philips - Eindhoven
Philips, Aixtron - Aachen

U-Gent
IMEC
KU-Leuven

CNRS-IMN - Nantes

LCC - Toulouse

EPFL - Lausanne
CNR-ISOF - Bologna
NNL - Lecce

OLLA Consortium:
24 Partners:
- 10 Industries
- 7 Academia
- 7 Universities

SPIE INNOVATION SUMMIT

OLLA

Integrated Project:

• Horizontally integrated: SMO LED and PO LED in one project

• Vertically integrated: from molecules to applications.

• We are strongly interdisciplinary
Physicists, (electro) chemists, material scientists, industrial developers, optical designers, PhD students and even a manager!

Final target: OLLA light-tile

Brightness: 1000 cd/m²
Efficiency: 50 lm/W
Lifetime: 10,000h
Color Rendering Index: >70
Size: 30cm x 30cm
Color: White

> proves fit of OLEDs for Lighting Applications
The OLLA project

OLLAR Final result OLLA project (June 2008):

- 50.7 lm/W (color point 0.45/0.45) @ 1000 cd/m² and lifetime of over 10,000 hrs.

OLLAR OLLA results: ITO-free OLED lighting devices

A double emission green OLED on a polymer anode with an active area of 1.1 cm², using Clavios PH 500 from HC-Starck instead of Indium Tin Oxides (ITO).

Press release 2006
OLLA result: large sized white OLEDs

Large area OLEDs (150x150mm)

OLLA results: gravure printed OLEDs

Gravure printed PEDOT and emissive layer on glass (31cm²)
The OLLA project

OLLA

Other results: dissemination

- Over 100 Scientific publications
- Contributions to all major OLED conferences
- Several patent filed
- Many public showcases, EU conferences
- 5 TV shows, many magazines, newspapers
- ..

OLLA Summer School Activity

We conducted 4 open summer schools, with 60-70 participants and 15 lecturers each, from all over the world.

Material online available,
next school: April 2009
OLL A

OLL A: N ot enough to beat existing light sources

<table>
<thead>
<tr>
<th>Technology</th>
<th>Power</th>
<th>Luminous Flux</th>
<th>Efficacy</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Bulb</td>
<td>100 W</td>
<td>1.360 lm</td>
<td>14 lm/W</td>
<td>1.000 h</td>
</tr>
<tr>
<td>Halogen lamp, Standard</td>
<td>50 W</td>
<td>910 lm</td>
<td>18 lm/W</td>
<td>2.000 h</td>
</tr>
<tr>
<td>White LED</td>
<td>3 W</td>
<td>> 180 lm</td>
<td>> 70 lm/W</td>
<td>70.000 h</td>
</tr>
<tr>
<td>Fluorescent lamp</td>
<td>35 W</td>
<td>3.300 lm</td>
<td>90 lm/W</td>
<td>16.000 h</td>
</tr>
<tr>
<td>Compact fluorescent lamp</td>
<td>11 W</td>
<td>630 lm</td>
<td>57 lm/W</td>
<td>12.000 h</td>
</tr>
</tbody>
</table>
Towards OLEDs for general illumination

State-of-the-art in white OLED (as of June 2008)

<table>
<thead>
<tr>
<th>Company/Institution</th>
<th>Year</th>
<th>Efficacy at 1.000 cd/m²</th>
<th>Lifetime at 1.000 cd/m²</th>
<th>Emitter type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novaled / Philips</td>
<td>2006</td>
<td>32 lm/W</td>
<td>20.000 h</td>
<td>P, P, F</td>
</tr>
<tr>
<td>Konica-Minolta</td>
<td>2006</td>
<td>64 lm/W</td>
<td>10.000 h</td>
<td>P, P, P</td>
</tr>
<tr>
<td>The OLLA-Project</td>
<td>2007</td>
<td>25 lm/W</td>
<td>5.000 h</td>
<td>P, P, F</td>
</tr>
<tr>
<td>Idemitsu Kosan</td>
<td>2007</td>
<td>17 lm/W at 10 mA/cm²</td>
<td>30.000 h</td>
<td>F, F, F</td>
</tr>
<tr>
<td>Osram</td>
<td>2008</td>
<td>46 lm/W</td>
<td>5.000 h</td>
<td>P, P, F</td>
</tr>
<tr>
<td>Novaled</td>
<td>2008</td>
<td>35 lm/W</td>
<td>100.000 h</td>
<td>P, P, F</td>
</tr>
<tr>
<td>The OLLA-Project Philips / Novaled</td>
<td>2008</td>
<td>51 lm/W (80 lm/W)*</td>
<td>>10.000 h</td>
<td>P, P, F</td>
</tr>
<tr>
<td>UDC</td>
<td>2008</td>
<td>(102 lm/W)*</td>
<td>8.000 h</td>
<td>P, P, P</td>
</tr>
</tbody>
</table>

*: Measured with macro-extractor

Trend 30-60 lm/W in white in combination with good lifetime achieved
The OLLA project

Further OLED Research steps:

- **higher efficacy** 100 lm/W or more
- **Longer lifetime** > 10,000 h
- **Higher brightness levels** > 1,000 cd/m²
- **Larger area** OLEDs

And at the same time
- Lower **manufacturing cost**
- Improve **reliability**
- And set early **standardization** for the market

Means big innovation for OLEDs steps in:

- Material research
- Device research
- Optical outcoupling enhancement
- Process development
- Equipment development
- Industrialization
- Standardization

No party can do this all alone!

Many interactions and cycle loops needed

> Cooperation essential to meet these challenges
The OLLA project

OLLA

European solution: co-creation in projects

- OLLA: oled for general lighting
- Rolled/Fast2Light: flexible oleds
- Aeviom: electrical modeling
- O PAL: Large OLEDs
- CarO LED: automotive OLEDs
- Hobbit: Polymer oled
- HypO LED: O led on CMOS
- Comboled/Rollex: printed OLEDs on metal

- VTT / Comeddd / HolstCentre: Cooperation R&D centres
- Bi-lateral cooperation
- Sponsored University research
- Coordination networks (Opera)
- Coordination platforms (Photonics21)

OLLA

Partners:

14 partners from 6 countries
The OLLA project

The ‘100’ objectives:

- High energy efficiency: 100 lm/W
- Long operational lifetime: 100,000 hours
- Large area processing: 100x100 cm²
- Low-cost production: 100 €/m²

• System integration
• Standardization
• Application research

Start: Sept. 2008
Philips coordinator
14 partners
6 countries
www.oled100.eu

Overview

• Solid State Lighting
• OLED technology basics
• The OLLA project
• OLED Development & status
• Shaping the OLED industry
The O LED proposition

- Novel bright light source with totally different form factor
 - Customizable Any2D
 - Transparent
 - Flexible
- Potentially very efficient
 - Environment
- Potentially very long lasting
 - Install once
- Potentially very cheap
 - No luminaire optics needed

Whole range of novel lighting applications

Philips
Sketch: OLED industry environment

- Global development race
- University & company research and mixed
- Complex interactions: parallel development of materials, processes and machines

But also:
- Large collection of IP already settled
- No player controls the whole v-chain
- More efficient other light sources
- Specialized personnel need
- No market / production yet (price & lack of experience)

A couple of technical challenges ahead

- How to raise efficiency performance
- How to extend lifetime of OLEDs
- How to lower the price of OLEDs
- How to produce square km of OLEDs
- How to enlarge OLED tiles efficiently
- How to make them on flexible substrates
- How to get the trapped light out of the substrates
- How to electrically drive the OLEDs
- How to beat existing light sources

working alone is not the best answer to all of these questions
The OLLA project

OLLA

OLED Value chain: *still to be defined*

- Material Supplier
- OLED
- Wholesaler
- End customer

Glass Materials → O LED Deposition → Driver & Mounting → O LED luminaire

High price
No volume

No experience
No demand

OLLA

Lack of OLED experience among value chain

- Need to inform and educate value chain partners
 - Architects
 - Lighting Designers
 - Early customers
 - Material manufactures
 - Machine developers

- No standards yet applicable
 - Measurement standards
 - Device size standards
 - Connections and driving standards

Awareness vs. Experience
The OLLA project

Philips

Philips: first to offers OLED Technology Kit

Available via www.lumiblade.com

OLLA

My conclusions

- OLLA proved that **OLED is a true Lighting Technology** with many opportunities
- Still many technical challenges ahead and being worked on at various locations
- But the **market challenge** may be the biggest challenge for the next decade
- Good and **close cooperation** between material suppliers, machine manufacturers, OLED developers, end-consumers is essential to meet these challenges.
- Europe is using the **cooperation projects** to unlock the OLED lighting market
The OLLA project

Project sponsors acknowledgements

The OLLA project was funded under the IST priority (contract nr 4607) of the European 6th Framework Programme

The work in OLED100.eu receives funding from the European Community’s Seventh Framework Programme under grant agreement n° FP7–224122

View our OLEDs at www.lumiblade.com