Acoustical measurements improve print flaw detection and authenticity checking

Volker Lohweg, Johannes G. Schaede, and Thomas Türke

Acoustical and physical measurements—like temperature, pressure, etc.—are combined with image-processing inspection methods in a new approach for print-flaw detection in printing machines.

Authenticity checking and inspection during the printing of highly-secure bank notes and securities is traditionally a labor-intensive process where every item is manually inspected. With the implementation of more-sophisticated security features (both visible and invisible), and the need to reduce the costs of printing, it is clear that automation is required. As more print techniques are employed and new security features established, total security, authenticity, and printing quality must be assured.\(^1\)\(^-\)\(^3\) We have demonstrated that sensor systems can be combined with optical printing inspection methods to enhance the stability of inspection, streamline authentication results, and improve the rate of false classifications.

During printed-product manufacturing, steps are typically taken to ensure a certain level of quality. This is particularly true in the field of security printing, where the standards that must be reached for end products (such as bank notes and security documents) are very high. In these cases, the quality control for printed products is conventionally limited to manual optical inspection. In general, these mono-modal systems have difficulties in detecting slow degradation errors that occur over time, such as those caused by the noise of the printing press. While experienced operators may be capable of identifying degradation or deviation in press behavior, we propose a concept for authenticity checking and inspection that is based on sensor fusion and fuzzy interpretation of data measures.

We have employed acoustical and other measurements—such as the temperature and pressure of the printing machines—to supplement optical printing inspection methods. Cepstrum methods, for instance, are used to monitor the pressure. All signals or combinations of signals are analyzed in the time-frequency (quefrency) domain\(^4\) with a fuzzy pattern classifier model.\(^5\)\(^-\)\(^7\) The monitored machine is provided with multiple sensors that are mounted on key functional components of the printing press. As these are intended to monitor the behavior of the printing press during processing of the printed substrates, the sensors must be selected appropriately.

Fuzzy pattern classification techniques are used in order to implement machine behavior analysis. In other words, sets of fuzzy-logic rules are applied to characterize the behaviors of the printing press and to model the various classes of printing errors that are likely to appear during the printing process. Once these rules have been defined, they can be applied to monitor the behavior of the press and identify a possible correspondence with any machine behavior that leads to (or is likely to lead to) the occurrence of printing errors. This is a particularly effective way to describe and the press behaviors and fit them into a limited number of classes.

In general, fuzzy pattern classification partitions the input space into categories (or pattern classes) and assigns a given pattern to one of them. If a pattern does not fit directly within a given category, a so-called ‘goodness of fit’ (membership function \(\mu\)) is reported. By employing fuzzy sets as pattern classes, it is possible to describe the degree to which a pattern belongs to one class or to another. Figure 1 is a schematic sketch of the ar-
Figure 2. The fuzzy pattern classifier can be used to detect printing flaws up to ten printing sheets or formats earlier than with optical-only inspection systems.

architecture of a fuzzy classification system for implementing the machine behavior analysis. The operational parameters P_1 to P_n (sensed by the multiple-sensor arrangement) are optionally preprocessed prior to feeding into the pattern classifier.

We use the basic fuzzy classifier known as the Tagaki-Sugeno-Kang model (TSK model), which is usually applied to controls. However, in this case, it has been adapted and modified to use in sensor and data fusion. The first and second parts of the model are exactly the same as the Mamdani model, which is characterized by the definition of membership functions μ, and the connection between the membership functions in the form of rules like ‘IF $<\text{premise}>$ THEN $<\text{conclusion}>$’. These are usually modeled as unimodal potential functions.

This new inspection and authentication approach for securities and bank note printing results in a robust and reliable detection of flaws and/or authentication markers. Based on expert knowledge of the relationship of machine parameters, rules can be defined that supply a goodness of fit value between one and zero at the output of the classifier. The system ‘observes’ the various machine parameters and then uses a classifier model with manually-tuned or learned parameters to decide whether the data is as expected or not.

Figure 2 shows where optical inspection, machine current, and acoustical signals (cepsrum per printed sheet, machine side 1: y3s1) are fused with the fuzzy pattern classifier. Print flaws were detected by an optical inspection beginning at printed sheet number 500. As errors occur sporadically from sheet 450 onwards, the fused score value gives better results as compared with the optical inspection only. Our research shows that with our method, printing flaws can be identified up to ten printing sheets or formats earlier than with optical-only inspection technique.

This work was supported by the company KBA-Giori S.A., Lausanne, Switzerland.

Author Information

Volker Lohweg
Discrete Systems Lab
University of Applied Sciences Lippe and Hoexter
Lemgo, Germany
http://www.ee.fh-luh.de/lds/en

Volker Lohweg is the head of the Discrete Systems Lab within the Department for Electrical and Information Engineering at the University of Applied Sciences Lippe and Hoexter. He has worked in the field of security printing technology for 15 years and was previously with Koenig & Bauer AG, Germany. He is an active SPIE author in the field of image processing and security printing.

Johannes G. Schaede
Research and Development
KBA-Giori SA
Lausanne, Vaud Canton, Switzerland
http://www.kba-giori.com

Johannes Schaede is the Technical Director of KBA-Giori SA, a company in the KBA group. After mechanical and control studies at the Swiss Federal Institute of Technology Zurich, he jointed Koenig & Bauer AG (KBA), Germany. He has more than 20 years experience in the field of security printing and is an active author for SPIE with special interests in security printing and counterfeit-deterrent features.

Thomas Türke
Optical Systems
KBA-Bielefeld
Leopoldshöhe, Germany
http://www.kba-print.de

Thomas Türke is the head of KBA-Bielefeld, a company in the KBA group. After his studies in electrical engineering at the University of Applied Sciences, Bielefeld, he jointed the printing industry. With more than 15 years of experience in the area
of security printing, he is an active author for SPIE with main
interests in security printing and counterfeit deterrence.

References
1. S. Brown, Latest Developments in On and Off-line Inspection of Bank-Notes during
2. J. G. Schaede, Bridging the Process Gaps In Finishing through Numbering and Inspec-
tion Evolution, in 10th International Currency Conference 2005, Montréal, Québec,
4. Bogert et al., The Quayrency Analysis of Time Series for Echoes: Cepstrum, Pseudo-
autocovariance, Cross-Cepstrum, and Saphe Cracking, in M. Rosenblatt ed., Proc. Sym-
5. V. Lohweg, J. Schaede, and T. Türke, Robust and Reliable Banknote Authentication
and Print Flaw Detection with Opto-Acoustical Sensor Fusion Methods, Proc. SPIE 6075,
2006. doi:10.1117/12.640921
6. V. Lohweg, C. Diedrichs, and D. Müller, Algorithms for Hardware-based Pattern
Recognition, EURASIP Journal on Applied Signal Processing, Special Issue on
7. T. Türke and V. Lohweg, Real-Time Image-Processing-System-On-Chip For Se-
doi:10.1117/12.527452
8. M. Sugeno and T. Tagaki, Fuzzy Identification of Systems and its Applications to
Security Printing With Parametrical Fuzzy Classification, Fusion 2006, in 9th Interna-
tional Conference on Information Fusion, Proceedings, Florence, Italy, 10–13 July
Accepted for Publication.
10. E. H. Mamdani and S. Assilian, An Experiment in Linguistic Synthesis with a
11. S. F. Bocklisch and U. Priber, A Parametric Fuzzy Classification Concept, in Pro-
ceedings of the Int. Workshop on Fuzzy Sets Applications, pp. 147–156, Eisenach,