Overview

Theory and Analysis

Visible Systems

Infrared Systems

Tolerances

Reflective Systems

Computer Optimization
Overview
Mechanically and optically compensated zoom lenses

Survey of zoom lenses
Arthur Cox, [1997]

Recent development of zoom lenses
Kazuo Tanaka, Kazuo Tanaka, [1997]

Principles and types

Zoom lens principles and types
E. Betensky, [1992]

Bidimensional lens systems: a rational approach to group displacements during focusing and/or zooming
J. P.L. Angenieux, [1987]
Theory and Analysis
First Order and Paraxial Solutions

General paraxial analysis of mechanically compensated zoom lenses
Kazuo Tanaka, [1999]

Zooming-component loci of mechanically compensated zoom lenses
Kazuo Tanaka, [1999]

Solution for first-order design of a two-conjugate zoom system
Mau-Shiun Yeh, Shin-Guo Shiue, Mao-Hong Lu, [1997]

First-order analysis of a three-lens afocal zoom system
Mau-Shiun Yeh, Shin-Guo Shiue, Mao-Hong Lu, [1997]

Fundamental limits of zoom systems
James B. Lasche, Bryan D. Stone, [1997]

Zoom systems: basic configurations
Mark L. Oskotsky, Lev Sakin, [1997]

Paraxial determination of the general four-component zoom system with mechanical compensation
Tadeusz Krysztanczynski, [1995]

Varifocal differential equation theory of zoom lenses
Chunkan Tao, [1995]

First-order principles of zoom optics explained via the macro focus conditions of fixed-focal-length lenses
Iain Alexander Neil, [1995]

Grapho-analytical method for the first-order design of two-component zoom systems
Mark L. Oskotsky, [1992]

Zoom lenses with a single moving element
R. Barry Johnson, Chen Feng, [1991]

Zooming Movements

Automatic computation of displacements of zoom lens movable components
Audrey V. Ivanov, [1999]

Analytic derivation of zoom motion in lenses with 1 to 3 moving groups subject to dimensional boundary conditions
Irina L. Anitropova-Livshits, Victor A. Zverev, Svetlana A. Nechaeva, [1995]
Theory and Analysis (cont.)

Aberration Correction Techniques

Variable spherical aberration generators
Matthew T. Chang, Jose M. Sasian, [1997]

An analytical technique for stable aberration correction in zoom systems
H. H. Hopkins, [1983]

Designing zoom lenses aided by the Delano diagram
Walter Besenmatter, [1980]

Pupil Problems

Method for solving paraxial pupil problems in zoom systems
Tadeusz Kryszczynski, [1997]

Pupil aberration in zoom lenses
Matthew T. Chang, Robert R. Shannon, [1997]

An improved zoom lens with external entrance pupil
K. M. Bystricky, P. R. Yoder, Jr., [1991]

Camera Zoom and Pan

Wiener filter for zoom parameter estimation in three-parameter motion model
Pei-Chuan Liu, Wen-Zen Shen, Wen-Thong Chang, [1997]

Camera zoom/pan estimation and compensation for video compression
Yi-tong Tse, Richard L. Baker, [1991]

Automatic Target Recognition

Zoom lens for automatic target recognition
Vicente P. Concepcion, Harry Wechsler, [1992]

Optical Flow Modeling

Optic flow modeling under shifting center of zoom
Bijan G. Mobasseri, Siva Doraiswamy, [1995]
Visible Systems

Cinematography

Review of recent zoom lens developments for 35mm cinematography at Panavision
Iain A. Neil, [2000]

High-performance wide-angle macrofocus zoom lens for 35-mm cinematography
Iain Alexander Neil, Ellis I. Betensky, [1998]

Ultrahigh-performance long-focal-length lens system with macro focusing zoom optics and
abnormal dispersion liquid elements for the visible waveband
Iain Alexander Neil, [1995]

Ultrahigh-performance long-focal-length close-focusing zoom lens for the visible waveband
Iain Alexander Neil, [1993]

Ultra-high-performance zoom lens for the visible waveband
Iain Alexander Neil, [1991]

A new large aperture zoom lens for 16 mm motion picture cameras
W. Woltche, [1986]

Film Cameras

Development of zoom lenses for camera and technical topics: design examples, analysis,
optical design method, aspherical lenses, and manufacturing
Hisayuki Masumoto, [1998]

Design of an image-stabilizing optical system
Shingo Hayakawa, [1998]

Design of compact camera zoom lenses with high zoom ratios
Takanori Yamanashi, [1997]

Compact zoom lenses for photographic cameras
Mark M. Meyers, [1997]

Systematic design of two-group refractive zoom lenses
Kuang-Lung Huang, Jonathan Maxwell, [1996]

New compact Xenon flash system for zoom lens and close-up photography
Dah Yu Cheng, [1993]

Design and structure of high-performance zoom lenses for 35-mm photography
Walter Woeltche, [1993]

Design of a twenty-element long focal length zoom lens
Robert M. Malone, Brent C. Frogget, David A. Grafton, Frank R. Mitchell, [1990]
Visible Systems (cont.)

Film Cameras (cont.)

A high-speed, eight-frame image intensified electro-optic camera with 200-800mm zoom objective capability

The modern zoom lens for 35 millimeter photography
E. Betensky, [1985]

Changes in aberrations due to focusing and their elimination
Eiichi Takano, [1980]

Continuous close focusing telephoto zoom lens

Video Cameras

Measurement method of zooming by a cameraman
Akio Ishikawa, Daiichiro Kato, Hiroshi Fukushima, [1998]

Zoom system design of 14X using optimized lens modules
Sung Chan Park, [1997]

Zoom lens design using lens modules
Sung Chan Park, Robert R. Shannon, [1996]

Zoom lens calibration for wind tunnel measurements
Alpheus W. Burner, [1995]

Video camera zoom lens design using lens modules
Sung Chan Park, Keun Bae Kim, [1995]

Design of a space-qualified zoom lens for the space station mobile servicing system video camera
Anthony B. Hull, Roger Henri Arsenault, Dave G. Hulan, William F. Morgan, [1995]

Calibrating zooming cameras from multiple images without feature extraction
W. Brent Seales, David W. Eggert, [1994]

CCD Systems

New tool for high-resolution multichannel readout: megapixel electron-bombarded CCD image zoom tube
Visible Systems (cont.)

CCD Systems (cont.)

Zoom lenses for small CCD cameras
Ellis I. Betensky, [1995]

Real-time digital radiographic system with continuously variable magnification using an intensified CCD camera and a fluorescent screen
Mauro Gambaccini, Angelo Taibi, Michele Marziani, Alberto Del Guerra, [1994]

Electronic pan/tilt/zoom camera system
Steven D. Zimmermann, [1993]

Electronic pan/tilt/zoom camera system
Steven D. Zimmermann, H. Lee Martin, [1993]

Custom fixed-focal length versus zoom lenses
Richard L. Mills, David E. Stoltzmann, [1988]

Projectors

Compact wide-range telecentric zoom lens for DMD projectors
J. Brian Caldwell, Ellis I. Betensky, [1998]

Zoom lens design for video projector
Rekha Doshi, Eugene Octavian Curatu, [1997]

Zoom projection lens
Melvyn Kreitzer, Jacob Moskovich, [1995]

Variable focus slide projector lens using axial gradient element
Martin L. Miller, Paul K. Manhart, [1995]

Modeling and calibration of automated zoom lenses
Reg K. Willson, [1984]

Perspective projection camera model for zoom lenses
Reg K. Willson, Steven A. Shafer, [1994]

Wide-angle Systems

Wide-angle zoom lens with removed forward entrance pupil
Irina L. Livshits-Anitropova, Michael M. Russinov, Igor G. Bronchtein, [1998]

Wide angle zoom for the space shuttle
J. Angenieux, J. Debize, A. Masson, [1983]
Visible Systems (cont.)

Diode Laser Systems

Cylindrical zoom optics for high-power diode lasers
Bodo Ehlers, Urban Walz, Stephan Heinemann, [2000]

Design and manufacture of the world's largest refractive zoom system
Victor J. Doherty, [1995]

Stereo Systems

High-speed optical 3D roughness measurements
Robert Windecker, Stefan Franz, Hans Tiziani, [1999]

Optical design of stereo zoom microscope
Junhe Meng, Jian Liu, [1998]

Design of a high-resolution stereo zoom microscope

Accuracy of scene reconstruction with an active stereo vision system using motorized zoom lenses
Peter Weckesser, Ruediger Dillmann, [1994]

Compact zoom lens for stereoscopic television
Peter M. Scheiwiller, S. P. Murphy, Andrew A. Dumbreck, [1991]

Special Applications

Steerable zoom periscope
Michael Owen Lidwell, [1995]

High-resolution dynamic CT scanner based on a variable-zoom XRII and a linear photodiode array
Maria Drangova, David W. Holdsworth, Aaron Fenster, [1993]

Special Surfaces and Materials

Design study of a 2.2x zoom lens using plastic materials

Design of a projection TV zoom lens with the grin lens and aspherical surface
Fu-Ming Chuang, Feng-Chao Chung, [1998]

Design of zoom lens with binary optics
Zhicheng Weng, Xin Zhang, Xiaojie Cong, [1995]

Design and characterization of an aspherical zoom lens for projection TV
Luh-Hwa Chen, Wein-Chyi Horng, Ryh-Huang Chen, Chie-Ching Lin, [1995]
Visible Systems (cont.)
Special Surfaces and Materials (cont.)

Zoom lens design using gradient-index lenses
Masaharu Deguchi, Duncan T. Moore, Douglas S. Kindred, [1994]

Control of gradient index profile for gradient index glasses of macro size and large δn for a varifocal slide projector lens
Xiaojie Xu, Max Andrew Wickson, Michael Savard, Paul Sherman, [1993]

Aspheric technology for zoom lenses
Toshihide Dohi, [1992]

Zoom lens with aspherical plastic lenses for video camera
Masahiko Yatsu, Masaharu Deguchi, Kenji Kobayashi, Takesuke Maruyama, [1992]

Zoom lens with aspherical lens for camcorder
Masahiko Yatsu, Masaharu Deguchi, Takesuke Maruyama, [1991]

Role of aspherics in zoom lens design
Ellis I. Betensky, [1991]

Zoom lens design using GRIN materials
Hirofumi Tsuchida, Norihiko Aoki, Kazushi Hyakumura, Kimiaki Yamamoto, [1991]
Infrared Systems

Overview

Infrared zoom lenses in the 1990s
Allan Mann, [1994]

Infrared zoom lenses in the 1980s and beyond
Allan Mann, [1992]

Zoom lenses for infra-red applications
Jacques Debize, Pierre Nory, [1986]

Theory and Analysis

First- and third-order analysis of aperture stop location in infrared zoom lens systems
Allen Mann, [1995]

Dynamic projecting IR zoom-based systems
Benjamin E. Sturlesi, Sami Mangoubi, Emanuel Ben-David, [1995]

3 to 5 Micrometer Waveband

High-magnification zoom lenses for 3- to 5-µm applications
R. Lawrence Sinclair, [1998]

Diffraction-limited infrared zoom collimator
Thomas H. Jamieson, [1997]

Design of compact zoom system for 3-to-5-µm waveband thermal imager
Ming-Wen Chang, Shin-Guo Shiue, Fu-Ming Chuang, [1997]

Compact infrared zoom lens for the 3- to 5-µm spectral band
R. Barry Johnson, Allen Mann, Patrick J. Reardon, Bruce R. Peters, [1996]

Three-element infrared optically compensated two-position zooms for commercial FLIRs
Robert E. Aldrich, [1995]

IR simulation of missile closing on a moving textured object with a textured background and EO countermeasure
Emanuel Ben-David, Dario Cabib, [1992]

8 to 12 Micrometer Waveband

Triple FOV IR sensor: an optimum configuration geometry

Zoom athermal telescope having 18.5 magnification range for 8 to 12-u range FLIR systems
Mark S. Shechterman, [1995]
Infrared Systems (cont.)

8 to 12 Micrometer Waveband (cont.)

Actively controlled 5:1 afocal zoom attachment for common module FLIR

Two-position IR zoom lens with low f-number and large format

Design of compact IR zoom telescope
Ruiyi Chen, Xiuli Zhou, Xingde Zhang, [1991]

High-performance, wide-magnification-range IR zoom telescope with automatic compensation for temperature effects
Mark S. Shechterman, [1991]

The development of a compact I.R. zoom telescope
Philip Parr-Burman, Allan Gardam, [1985]

Compact infrared continuous zoom telescope
M. Roberts, [1984]

Infrared zoom lens system for target detection
A. Mann, [1982]

Design and implementation of a continuous zoom FLIR optical system
G. R. Noyes, [1978]

Athermalization

Long wave infrared zoom projector thermal analysis and compensation
Michael E. Couture, Weiman Shi, [2000]

Active temperature compensation of an infrared zoom lens
Eric H. Ford, [1997]

Athermalization design in the big-aperture IR zoom telescope
Dayue Zheng, Ruiyi Chen, Zhijian Ye, Fangqing Jin, Xiuli Zhao, Xingde Zhang, [1995]

Athermalization of a fast infrared telescope objective
Richard C. Simmons, [1995]

Combination of mechanical athermalization with manual in IR zoom telescope
Ruiyi Chen, Dayue Zheng, Xiuli Zhou, Xingde Zhang, [1991]

Stability of aberrations with temperature in fast thermal imaging zoom telescopes
R. C. Simmons, R. C. Simmons, P. A. Blaine, P. A. Blaine, [1988]
Infrared Systems (cont.)

Athermalization (cont.)

Use of a zoom converter to perform focusing and thermal compensation
Pierre Nory, Pierre Nory, [1985]

CO₂ Laser Applications

Zoom lens designs for use in sheet-metal cutting by high-power CO₂-lasers
Leo H. J. F. Beckmann, Otto Maerten, [1993]

Zoom system for CO₂ laser, precalculation and final design
F. A. Aurim, [1986]

Special Surfaces

Diamond-turned optics aid alignment and assembly of a dual-field infrared imaging missile tracker
Robert C. Guyer, Clinton E. Evans, Brien D. Ross, [1998]

High-aperture zoom optics employing diffractive surfaces in the 3-to-5-μm infrared waveband
Michael Roberts, [1997]

Use of a diffractive element to control pupil aberrations in a DFOV telescope
Marta C. de la Fuente, [1995]

Compact DFOV objective for the 3- to 5-μm waveband
Marta C. de la Fuente, [1997]

Role of diffractive optical elements in the design of mid-wave infrared zoom lenses
Russell M. Hudyma, [1993]

Key technologies for IR zoom lenses: aspherics and athermalization
P. Nory, [1991]
Tolerances

Tolerances for the Infrared

Zoom lens tolerances and design concepts
Iain A. Neil, Morag Y. Turnbull, [1985]

Centering Errors

Centering errors in zoom systems: effect on transverse image position
H. Zugge, [1986]
Reflective Systems

Dual telescope system for all seasons: an all-reflecting UV-to-LWIR multifocal length telescope combination for advanced range instrumentation
Joseph B. Houston, Delmar D. Haddock, [1999]

Zoom relay lens for a family of catadioptric objective lenses
Ellis I. Betensky, [1997]

Application of catadioptric mirrors in zoom optical systems
Kuang-Lung Huang, Jonathan Maxwell, [1996]

Zoom optics with offset cassegrain and reflective relay
Thomas H. Jamieson, [1995]

Catadioptric optically compensated zooming with one moving element
David R. Shafer, [1995]

All-reflective four-element zoom telescope: design and analysis

Four-spherical-mirror zoom telescope continuously satisfying the aplanatic condition
Seung Yu Rah, Sang Soo Lee, [1989]

Unobscured Systems

Design, fabrication, and alignment of a broadband zoom collimator for the wideband infrared scene projector
James W. Arendt, [1999]

Design and analysis of a compact wide-field unobscured zoom mirror system
Allen Mann, R. Barry Johnson, [1997]

Synthesis of first-order designs of optically compensated catadioptric zoom optical systems
Kuang-Lung Huang, [1997]

Unobscured reflective zoom systems
R. Barry Johnson, [1995]

On the analysis of an all-reflective zoom optical system for the infrared
A. A. Desrochers, [1982]

An all-reflective zoom optical system for the infrared
W. E. Woehl, [1981]
Computer Optimization
Zoom Lens Design Methodology

Optimization glitches in zoom lens design
Iain Alexander Neil, [1997]

Integrated intelligent system for optical zoom lens design
Yuchuan Yao, Fengling He, Chunping Li, Yuan-Yuan Li, Zhicheng Weng, Yu-Hong Yang, Ren Tao, Xiaojie Cong, Zhiyong Chen, [1992]

Attempt to develop a zoom-lens-design expert system
Zhicheng Weng, Zhiyong Chen, Yu-Hong Yang, Ren Tao, Xiaojie Cong, Yuchuan Yao, Fengling He, Yuan-Yuan Li, [1991]

Zoom lens design methods for small computers
Atsuo Osawa, Atsuo Ohsawa, Jonathan Maxwell, M. J. Salter, [1989]

Zoom lens design
David S. Grey, [1991]

Global Optimization

Practical strategy for global optimization of zoom lenses
Thomas G. Kuper, Thomas I. Harris, [1998]

Global optimization of zoom lenses
Akira Yabe, [1998]