Proceedings Volume 9926

UV and Higher Energy Photonics: From Materials to Applications

cover
Proceedings Volume 9926

UV and Higher Energy Photonics: From Materials to Applications

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 1 December 2016
Contents: 10 Sessions, 12 Papers, 20 Presentations
Conference: SPIE Nanoscience + Engineering 2016
Volume Number: 9926

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9926
  • Raman and ATR Spectroscopy
  • UV Microscopy and Nanoscopy
  • Unconventional UV Light Source
  • Deep-UV LEDs
  • DUV Plasmonics
  • New Methods and Instrumentations
  • Materials and Devices I
  • Materials and Devices II
  • Poster Session
Front Matter: Volume 9926
icon_mobile_dropdown
Front Matter: Volume 9926
This PDF file contains the front matter associated with SPIE Proceedings Volume 9926, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Raman and ATR Spectroscopy
icon_mobile_dropdown
UV resonance Raman spectroscopic studies of protein structure and dynamics (Conference Presentation)
Sanford A. Asher, David Punihaole, Elizabeth M. Dahlburg, et al.
UV Raman excitation into the ~200 nm peptide bond electronic transitions enhance peptide bond amide vibrations of the backbone. A particular band (the amide III3) reports on the Ramachandran psi angle and peptide bond hydrogen bonding. This band is Raman scattered independently by each peptide bond with insignificant coupling between adjacent peptide bonds. Isotope editing of a peptide bond (by replacing the Calpha- H with Calpha- D) allows us to determine the frequency of individual peptide bonds within a peptide or protein to yield their psi angles. Consideration of the Boltzmann equilibria allows us to determine the psi angle Gibbs free energy landscape along the psi (un)folding coordinate that connects secondary structure conformations. The psi angle coordinate is the most important reaction coordinate necessary to understand mechanism(s) of protein folding. We have also discovered an analogous correlation for the primary amide sidechain of Gln. This allows us to monitor the hydrogen bonding and structure of this sidechain. We examine the details of peptide folding conformation dynamics with laser T-jumps where the water temperature is elevated by an 1.9 mM IR nsec laser pulse and we monitor the ~200 nm UV Raman spectrum as a function of time. These spectra show the time evolution of conformation. We will discuss the role of salts on stabilizing conformations in solution
Attenuated total reflection far-ultraviolet spectroscopy
Yukihiro Ozaki, Yusuke Morisawa, Takeyoshi Goto, et al.
Recently, far-ultraviolet (FUV) spectroscopy of solid and liquid states has been a matter of keen interest because it provides new possibilities for studying electronic structures and transitions of almost all kinds of molecules. It has also great potential for a variety of applications from quantitative and qualitative analysis of aqueous solutions to environmental and geographical analyses. This review describes the state-of- the-art of FUV spectroscopy; an introduction to FUV spectroscopy, the development of FUV spectrometers, investigations on electronic transitions and structure, its various applications, and future prospects.
Study of electronic transitions by using attenuated total reflectance spectroscopy in the far-UV region
Yusuke Morisawa, Shin Tachibana, Masahiro Ehara, et al.
The wavelength region shorter than 200 nm, far-ultraviolet (FUV) region, is very rich in information about the electronic states and structure of a molecule. Since the molar absorption coefficient is very high (∼105 mol-1 dm3 cm-1) in the FUV region, the electronic states and structure mainly for gas molecules has been investigated for a long time. On the other hand, as to molecules in the condensed phase transmittance spectra could not measure because of high molecular density, and reflection spectroscopy has been used to observe spectra of solid samples in the FUV region. However, for liquid samples generally either absorption spectroscopy or specular reflection spectroscopy was difficult to observe. Accordingly, FUV spectroscopy for liquid samples has been a relatively undeveloped research area. To solve the above difficulties of FUV spectroscopy we have recently developed a totally new UV spectrometer based on attenuated total reflection (ATR) that enables us to measure spectra of liquid and solid samples in the 140–280 nm region. This paper shows the studies by the attenuated total reflection far-ultraviolet (ATR-FUV) spectroscopy. These investigations elucidate the electronic structure and electronic transition in the FUV region for molecules such as n- and branched alkanes, alcohols, ketones, amides, and nylons in the liquid or solid phase. The consistent assignments were performed with a help of quantum chemical calculation.
UV Microscopy and Nanoscopy
icon_mobile_dropdown
Scanning near-field optical microscopy of AlGaN epitaxial layers
S. Marcinkevičius, R. Jain, M. Shatalov, et al.
Scanning near-field PL spectroscopy was applied to study spatial variations of the emission spectra of AlGaN epilayers with AlN molar fractions between 0.3 and 0.7. Experiments were performed at 300 K with 100 nm spatial resolution. In general, photoluminescence spectra were found to be highly uniform with the peak energy deviation of 2 to 6 meV for different alloy compositions. In the 30% and 42% Al layers, a slightly lower Al content and a higher point defect concentration at the boundaries of growth domains were detected. These features were attributed to the higher mobility of Ga adatoms during growth. The inhomogeneous broadening beyond the random alloy distribution was found negligible for the 30% and 42% Al samples, and about 40–50 meV for the layers with a larger Al content.
Deep-UV resonance Raman imaging of a cell (Conference Presentation)
Raman microscopy enables a sensitive, label-free molecular imaging of cells. Employing deep-UV (DUV) light for Raman excitation allows selective measurement of nucleotide bases and aromatic amino acids in a cell, without spectral overlapping of components with a large quantity (i.e. lipid, peptide), because their Raman scattering are specifically enhanced due to the resonance effect. To implement DUV resonance Raman imaging of cells, I previously established a home-built Raman microscope equipped with a DUV laser (λ = 257.2 nm). Raman image representing the distribution of cellular nucleic acid can be reconstructed with the intensity of a Raman band selectively assigned to adenine and guanine. Unfortunately, DUV resonance Raman imaging of cells is severely hindered by molecular photodegradation that occurs after a molecule absorbs DUV light during Raman measurement, precluding a high signal-to-noise ratio and repetitive measurement. To address this issue, I developed a technique for molecular protection under DUV exposure; the trivalent ions of lanthanide group including terbium, europium, and thulium could significantly suppress the molecular photodegradation by relaxing the DUV-excited molecules. The buffer solution containing any of these lanthanide ions with the concentration of 100 µM or higher could provide less destruction of the cellular structures, including nucleotide bases, than the one without the ions, under DUV exposure. Utilizing such protective effects of the lanthanide ions, I successfully achieved a twice higher signal-to-noise ratio and repetitive DUV Raman imaging of cells.
Unconventional UV Light Source
icon_mobile_dropdown
Solid-core and hollow-core photonic crystal fiber for generation of bright ultraviolet light (Conference Presentation)
Nicolas Y. Joly, Xin Jiang, John C. Travers, et al.
Over the last two decades the interest in photonic crystal fiber (PCF) has grown considerably, particularly in nonlinear optics where it allows enhanced control over the dispersion landscape. Although silica is the material most commonly used to fabricate PCF, its limited window of transmission and its susceptibility to optical damage at wavelengths below ~350nm is driving the development of fibers made from glasses with transmission windows extending into the deep ultraviolet and the mid-infrared. An alternative is offered by gas-filled hollow-core fiber, in which the light propagates predominantly in the gas. In kagomé-style hollow-core PCF filled with noble gas, the weak anomalous dispersion of the empty fiber is balanced by the normal dispersion of the filling gas, resulting in a versatile system whose dispersion landscape can be adjusted in real time [Travers et al., JOSAB 28, A11 (2011)]. Under appropriate conditions the launched pulse undergoes soliton self-compression followed by emission of a band of dispersive radiation in the UV. UV light tunable down to 113 nm has been generated with this technique [Russell et al., Nat. Photon. 8, 278 (2014)]. Solid-core ZBLAN (fluorozirconate) glass PCF is transparent from 0.2 to ~7.8µm. Launching ~1nJ 140fs pulses at 1µm wavelength into a ~1µm diameter core resulted, after 4cm of propagation, in generation of a supercontinuum spectrum extending from ~210nm to beyond 2µm. In strong contrast to silica PCF, the ZBLAN PCF showed no signs of any solarization-related damage, even when operating over many hours [Jiang et al., Nat. Photon. 9, 133 (2015)].
Plasmonic based light manipulation and applications in AIGaN deep-UV devices (Conference Presentation)
Jun Yin, Jing Li, Junyong Kang
Recently, surface plasmon (SP)-exciton coupling has been wildly applied in nitride semiconductors in order to improve the spontaneous radiative recombination rate [1-3]. However, most works have been focused on the emission enhancement in InGaN-based blue or green light emitting diodes (LEDs). Practically, it is significantly important to improve the emission efficiency in deep-UV AlGaN-base quantum well (QW) structure due to its intrinsically low internal quantum efficiency (IQE) induced by the high defect density in its epitaxy layer [4]. But, the effective SP-exciton coupling with matched energy in deep-UV region is still a challenge issue due to the lack of appropriate metal structures and compatible fabrication techniques. In this work, the Al nanoparticles (NPs) were introduced by the nanosphere lithography (NSL) and deposition techniques into the AlGaN based MQWs with optimized size and structure. Due to the local surface plasmon (LSP) coupling with the excitons in QWs, emission enhancement in deep UV region has been achieved in the Al NPs decorated AlGaN MQWs structure with comparison to the bare MQWs. Theoretical calculations on the energy subbands of AlGaN QWs were further carried out to investigate the corresponding mechanisms, in which the hot carrier transition activated by SP-exciton coupling was believed to be mainly responsible for the enhancement. This work demonstrated a low cost, wafer scale fabrication process, which can be potentially employed to the practical SP-enhanced AlGaN-based deep UV LEDs with high IQEs.
Deep-UV LEDs
icon_mobile_dropdown
Development of AlGaN-based deep-ultraviolet (DUV) LEDs focusing on the fluorine resin encapsulation and the prospect of the practical applications
Akira Hirano, Yosuke Nagasawa, Masamichi Ippommatsu, et al.
AlGaN-based LEDs are expected to be useful for sterilization, deodorization, photochemical applications such as UV curing and UV printing, medical applications such as phototherapy, and sensing. Today, it has become clear that efficient AlGaN-based LED dies are producible between 355 and 250 nm with an external quantum efficiency (EQE) of 3% on flat sapphire. These dies were realized on flat sapphire without using a special technique, i.e., reduction in threading dislocation density or light extraction enhancement techniques such as the use of a photonic crystal or a patterned sapphire substrate. Despite the limited light extraction efficiency of about 8% owing to light absorption at a thick p-GaN contact layer, high EQEs of approximately 6% has been reproducible between 300 and 280 nm without using special techniques. Moreover, an EQE of 3.9% has been shown at 271 nm, despite the smaller current injection efficiency (CIE). The high EQEs are thought to correspond to the high internal quantum efficiency (IQE), indicating a small room for improving IQE. Accordingly, resin encapsulation on a simple submount is strongly desired. Recently, we have succeeded in demonstrating fluorine resin encapsulation on a ceramic sheet (chip-on-board, COB) that is massproducible. Furthermore, the molecular structure of a resin with a durability of more than 10,000 h is explained in this paper from the photochemical viewpoint. Thus, the key technologies of AlGaN-based DUV-LEDs having an EQE of 10% within a reasonable production cost have been established. The achieved efficiency makes AlGaN-based DUVLEDs comparable to high-pressure mercury lamps.
Completely transparent ohmic electrode on p-type AlGaN for UV LEDs with core-shell Cu@alloy nanosilk network (Conference Presentation)
Duanjun Cai, Huachun Wang, Youyang Huang, et al.
Metal nanowire networks hold a great promise, which have been supposed the only alternative to ITO as transparent electrodes for their excellent performance in touch screen, LED and solar cell. It is well known that the difficulty in making transparent ohmic electrode to p-type high-Al-content AlGaN conducting layer has highly constrained the further development of UV LEDs. On the IWN-2014, we reported the ohmic contact to n, p-GaN with direct graphene 3D-coated Cu nanosilk network and the fabrication of complete blue LED. On the ICNS-2015, we reported the ohmic contact to n-type AlGaN conducting layer with Cu@alloy nanosilk network. Here, we further demonstrate the latest results that a novel technique is proposed for fabricating transparent ohmic electrode to high-Al-content AlGaN p-type conducting layer in UV LEDs using Cu@alloy core-shell nanosilk network. The superfine copper nanowires (16 nm) was synthesized for coating various metals such as Ni, Zn, V or Ti with different work functions. The transmittance showed a high transparency (> 90%) over a broad wavelength range from 200 to 3000 nm. By thermal annealing, ohmic contact was achieved on p-type Al0.5Ga0.5N layer with Cu@Ni nanosilk network, showing clearly linear I-V curve. By skipping the p-type GaN cladding layer, complete UV LED chip was fabricated and successfully lit with bright emission at 276 nm.
An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: preferential outcoupling of strong in-plane emission (Conference Presentation)
Jong Kyu Kim, Jong Won Lee, Dong-Yeong Kim, et al.
AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) are being developed for their numerous applications such as purification of air and water, sterilization in food processing, UV curing, medical-, and defense-related light sources. However, external quantum efficiency (EQE) of AlGaN-based DUV LEDs is very poor (<5% for 250nm) particularly due to low hole concentration and light extraction efficiency (LEE). Conventional LEE-enhancing techniques used for GaInN-based visible LEDs turned out to be ineffective for DUV LEDs due to difference in intrinsic material property between GaInN and AlGaN (Al<~30%). Unlike GaInN visible LEDs, DUV light from a high Al-content AlGaN active region is strongly transverse-magnetic (TM) polarized, that is, the electric field vector is parallel to the (0001) c-axis and shows strong sidewall emission through m- or a-plane due to crystal-field split-off hole band being top most valence band. Therefore, a new LEE-enhancing approach addressing the unique intrinsic property of AlGaN DUV LEDs is strongly desired. In this study, an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells is presented. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage simultaneously. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes to maximize the power conversion efficiency.
DUV Plasmonics
icon_mobile_dropdown
Beyond the visible limit: plasmonics at the UV (Conference Presentation)
Remo Proietti Zaccaria, Francesco Bisio, Alessandro Alabastri, et al.
The proper exploitation of the plasmon resonance typical of metallic nanoparticles can allow for the confinement of the electromagnetic field in nanometric volumes, thus creating the so called "hot spots". These nanometric volumes are characterized by high field, remarkably useful characteristic for a huge variety of applications in photonics and optics. The most commonly employed plasmonic metals, Au and Ag, yield resonances only reaching up to the near-UV electromagnetic range, in fact stretching upwards the energy of plasmon resonances requires the use of different materials. Deep-ultraviolet plasmon resonances were indeed predicted exploiting one of the cheapest and most abundant materials available on earth. Aluminium holds the promise of a broadly-tuneable plasmonic response, theoretically extending far into the deep-ultraviolet (DUV). Complex fabrication issues, including the strong Al reactivity, have however stood in the way of achieving this ultimate DUV response. We report the successful realization of 2-dimensional arrays of ultrafine aluminium nanoparticles that exhibit a remarkable plasmonic response up to the DUV electromagnetic range. Careful nanofabrication allowed to maintain the mean NP size below 20 nm, preserving a purely-metallic core. These systems exhibit a striking high-energy plasmon resonance up to 6.8 eV photon energy, and preserve their DUV plasmon response when exposed to atmosphere [1,2]. These observations pave the way to the full exploitation of aluminium plasmonic tunability, hence extending the numerous applications of plasmonics to the high-energy side of the spectral range.
UV fluorescence lifetime modification by aluminum and magnesium nanoapertures
Yunshan Wang, Xiaojin Jiao, Eric M. Peterson, et al.
Ultra-violet (UV) fluorescence lifetime modification by aluminum (Al) and magnesium (Mg) nanoapertures are reported in this manuscript. Nanoapertures with diameter ranging from 30nm to 90nm are fabricated using focused ion beam (FIB). Largest lifetime reduction are observed for apertures with smallest diameters and undercuts into glass substrate. For Al nanoapertures, largest lifetime reduction is ∼5.30×, larger than perviously reported ∼3.50×.1 For Mg nanoapertures, largest lifetime reduction is ∼6.90×, which is the largest lifetime reduction of UV fluorescence dye reported so far in literature. The dependence of count rate per molecule (CRM) on aperture size and undercut is also investigated, revealing that CRM increases with increasing undercut, however, the CRM is small (less than 2) for the entire range of aperture size and undercut we investigated. FDTD simulation were conducted and in order to favorably compare experimental results with simulated results, it is critical to take into account the exact shape and material properties of the nano aperture. Simulation results revealed the fundamental difference between Al and Mg nano aperture under 266nm illumination-Mg nano aperture presents a waveguide mode in which the maximum field enhancement and Purcell factor is within the nano aperture instead of on the surface which is the case for Al nano aperture.
Deep-UV plasmonics of indium (Conference Presentation)
Deep-UV (DUV) plasmonics can expand the possibilities of DUV-based techniques (i.e. UV lithography, UV spectroscopy, UV imaging, UV disinfection). Here we present that indium is useful for research of DUV plasmonics. According to dielectric function, indium and aluminum are low-loss, DUV plasmonic metals, of which the imaginary parts are far smaller than those of other metals (i.e. rhodium, platinum) in the DUV range. Additionally, the real parts in the whole DUV range are close to but smaller than -2, allowing efficient generation of surface plasmon polaritons on an indium or aluminum nanosphere. In comparison to aluminum, indium provides a distinctive feature for fabricating DUV-resonant substrates. It is highly apt to form a grainy deposition film on a standard, optically transparent substrate (i.e. fused silica). The surface plasmon resonance wavelength becomes promptly tailored by simply varying the deposition thickness of the films, resulting in different grain sizes. Thus, we fabricated indium-coated substrates having different plasmon resonance wavelengths by varying the deposition thicknesses from 10 to 50 nm. DUV resonance Raman scattering of adenine molecules was best enhanced using the 25 nm deposition thickness substrates by the factor of 2. Furthermore, the FDTD calculation simulated the electromagnetic field enhancement over a grainy, indium-coated fused silica substrate. Both results indicate how indium plays an indispensable role in study of DUV plasmonics.
Development of far- and deep-ultraviolet surface plasmon resonance (SPR) sensor using aluminum thin film
Ichiro Tanabe, Yoshito Y. Tanaka, Takayuki Ryoki, et al.
We investigated the surface plasmon resonance (SPR) of aluminum (Al) thin films with varying refractive index of the environment near the films in the far‒ultraviolet (FUV, ≤ 200 nm) and deep‒ultraviolet (DUV, ≤ 300 nm) regions. By using our original FUV‒DUV spectrometer which adopts an attenuated total reflectance (ATR) system, the measurable wavelength range was down to the 180 nm, and the environment near the Al surface could be controlled. In addition, this spectrometer was equipped with a variable incident angle apparatus, which enabled us to measure the FUV‒DUV reflectance spectra (170–450 nm) with various incident angles ranging from 45° to 85°. Based on the obtained spectra, the dispersion relation of Al‒SPR in the FUV and DUV regions was obtained. In the presence of various liquids (HFIP, water, alcohols etc.) on the Al film, the angle and wavelength of the SPR became larger and longer, respectively, compared with those in the air (i.e., with no materials on the film). These shifts correspond well with the results of simulations performed according to the Fresnel equations, and can be used in the application of SPR sensors. FUV‒DUV‒SPR sensors (in particular, FUV‒SPR sensors) with tunable incident light wavelength have three experimental advantages compared with conventional visible‒SPR sensors, as discussed based on the Fresnel equations, i.e., higher sensitivity, more narrowly limited surface measurement, and better material selectivity.
New Methods and Instrumentations
icon_mobile_dropdown
Combined continuous and time-resolved CL to study semiconductor structure and defects (Conference Presentation)
Samuel Sonderegger, David Gachet, Jean Berney
Spectroscopic information may be acquired using an electron beam in a modern scanning electron microscope (SEM), exploiting the cathodoluminescence (CL) signal. CL offers several advantages over the usual optical spectroscopy. The multimode imaging capabilities of the SEM enable the correlation of optical properties (via CL) with surface morphology (secondary electron mode) at the nanometer scale and the large energy of the electrons allows the excitation of wide-bandgap materials. Here, we present results obtained on a field emission time-resolved and continuous (CW) cathodoluminescence scanning electron microscope. The microscope can either be operated in CW mode by heating up the emitter (Schottky emission), or in time-resolved mode by illuminating the field emission gun with a femtosecond UV laser, so that ultrafast electron pulses are emitted through the photoelectric effect. In both modes, a spacial resolution around 10 nm is demonstrated. The collected cathodoluminescence signal is dispersed in a spectrometer and analyzed with a CCD camera (CW mode) or an ultrafast STREAK camera to obtain <10 ps time resolution (TR mode). Quantitative CW cathodoluminescence was first used to quickly map defects in III-V semiconductor structures. Then, time-resolved cathodoluminescence measurements were carried out on specific regions in order to measure local lifetimes and carrier diffusion within the structures. We will also discuss the advantages of combining CL with a scanning transmission electron microscope (STEM) and introduce Attolight’s most recent developments in this field.
Sensitive imaging of organelles in label-free cells by surface plasmon resonance in deep-ultraviolet region (Conference Presentation)
Yoshimasa Kawata, Masakazu Kikawada, Atsushi Ono, et al.
In this research, we demonstrate the enhanced autofluorescence and high-sensitivity bioimaging of intracellular organelles using DUV-SPR. The Kretschmann configuration is used for excitation of DUV-SPR. We used an aluminum thickness of 24 nm. The alumina surface was estimated to be 6 nm by comparison between the experimental and calculated results. Reflectance after culturing of cells was measured. DUV-SPR is excited at an incident angle of 52° after the biological samples are cultured. MC3T3-E1 cells as Label-free cells are directly cultured on an aluminum and glass surfaces, and they were cultured on the both substrates in an incubator. Autofluorescence spectra excited of the label-free MC3T3-E1 cells was measured by 266-nm exictation. The autofluorescence intensity for the aluminum is higher than that for the glass. In the autofluorescence spectra, MC3T3-E1 cells exhibited two fluorescence peaks, which were located around 330 and 500 nm. These 330 and 500 nm emissions indicate aromatic amino acid and mitochondria, respectively. Both of the ehnahcement factors were 8 times. We also observed autofluorescence of aromatic amino acid and mitochondrial NADH in the label-free MC3T3-E1 cells cultured on the aluminum and glass surfaces. In the autofluorescence image with DUV-SPR, organelles can be clearly observed in the MC3T3-E1 cells. On the other hand, the autofluorescence intensity is very weak in the image without DUV-SPR. Accordingly, DUV-SPR can facilitate the observation of proteins, DNA in nucleus, and other structures that cannot be excited by visible light. DUV-SPR is shown to be a powerful technique for acquiring high-sensitivity label-free observation of biological samples.
Materials and Devices I
icon_mobile_dropdown
Enhanced radiative recombination probability in AlGaN quantum wires on (0001) vicinal surface
Minehiro Hayakawa, Yuki Hayashi, Shuhei Ichikawa, et al.
We propose to use quantum wires (QWRs) instead of quantum wells (QWs) to improve the internal quantum efficiency of AlGaN UV emitters. Crystal growth of AlGaN on the AlN vicinal (0001) surface with bunched steps creates Al-less AlGaN QWRs at the bunched step edges. Cathodoluminescence maps indicate the formation of the potential minima along the step edges. Photoluminescence spectroscopy reveals that the thermal quenching in the QWRs is suppressed by approximately one order of magnitude, compared with that in conventional (0001) AlGaN/AlN QWs, and the spectra are dominated by the QWR emissions at room temperature. We attribute the superior optical property of the AlGaN QWRs to the enhanced radiative recombination processes.
Materials and Devices II
icon_mobile_dropdown
From powerful research platform for industrial EUV photoresist development, to world record resolution by photolithography: EUV interference lithography at the Paul Scherrer Institute
Elizabeth Buitrago, Roberto Fallica, Daniel Fan, et al.
Extreme ultraviolet interference lithography (EUV-IL, λ = 13.5 nm) has been shown to be a powerful technique not only for academic, but also for industrial research and development of EUV materials due to its relative simplicity yet record high-resolution patterning capabilities. With EUV-IL, it is possible to pattern high-resolution periodic images to create highly ordered nanostructures that are difficult or time consuming to pattern by electron beam lithography (EBL) yet interesting for a wide range of applications such as catalysis, electronic and photonic devices, and fundamental materials analysis, among others. Here, we will show state-of the-art research performed using the EUV-IL tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). For example, using a grating period doubling method, a diffraction mask capable of patterning a world record in photolithography of 6 nm half-pitch (HP), was produced. In addition to the description of the method, we will give a few examples of applications of the technique. Well-ordered arrays of suspended silicon nanowires down to 6.5 nm linewidths have been fabricated and are to be studied as field effect transistors (FETs) or biosensors, for instance. EUV achromatic Talbot lithography (ATL), another interference scheme that utilizes a single grating, was shown to yield well-defined nanoparticles over large-areas with high uniformity presenting great opportunities in the field of nanocatalysis. EUV-IL is in addition, playing a key role in the future introduction of EUV lithography into high volume manufacturing (HVM) of semiconductor devices for the 7 and 5 nm logic node (16 nm and 13 nm HP, respectively) and beyond while the availability of commercial EUV-tools is still very much limited for research.
ZnO top-down structuring for UV photonic applications (Conference Presentation)
Komla D. Nomenyo, Clotaire Chevalier-César, Anna Rumyantseva, et al.
ZnO is a promising II-VI semiconductor for UV applications although p-type ZnO is not yet available. Nevertheless it remains an alternative material for GaN and its alloy InGaN. For example, the exciton binding energy of ZnO (60 meV) is higher than that of GaN (21 meV). This allows ZnO to emit light at ambient temperature and interestingly, it increases the device brightness. Besides promising intrinsic properties, light-matter control and especially in the UV relies on the ability of material nanostructuring. We present here two different kinds of top-down process in order to nanostructure ZnO. The first one relies on Electron Beam Lithography (EBL) combined with a lift-off process and inductively coupled plasma (ICP) reactive ion etching (RIE). Nickel (Ni) has been used as a mask in order to have a high selectivity in the presence of C2F6 and O2 ionized gases. The etching rate used was 26nm/s in order to avoid roughness. The second process is called Direct Holographic Patterning (DHP). ZnO thin films have been holographicaly patterned for the first time by direct photodissolution in NaCl solution using laser interference lithography. Application of an electrical potential strongly increases the dissolution rate and decreases the pattern formation time. Both processes will be discussed in terms of their respective potential for light confinement in the UV.
High-output-power third-harmonic generation at 355nmbased on La2CaB10O19 (LCB) crystal in yz plane
Third-harmonic generation (THG) with high output power based on the type-I phase-matching La2CaB10O19 (LCB) crystal was investigated in yz plane (θ=48.7°, φ=90°), in which direction the effective nonlinear coefficient (deff) of LCB is 0.7, much larger than the previous reports in other direction. The maximum output power we obtained at 355 nm was as high as 11.5 W, and the beam quality was measured to 1.47 in x direction and 2.56 in y direction. The angular bandwidth and temperature bandwidth in this direction were measured, which are larger than the previous reports also.
UV fluorescence enhancement from nanostructured aluminum materials
Danielle E. Montanari, Nathan Dean, Pete E. Poston, et al.
Interest in label-free detection of biomolecules has given rise to the need for UV plasmonic materials. DNA bases and amino acid residues have electronic resonances in the UV which allow for sensitive detection of these species by surface-enhanced UV fluorescence spectroscopy. Electrochemical roughening has been used extensively to generate plasmonically-active metal surfaces that produce localized enhancement of excitation and emission of electromagnetic radiation from surface-bound molecules. Electrochemically roughened gold and silver surfaces produce enhancement in the visible and near-IR regions, but to the best of our knowledge, application of this technique for producing UV-enhancing substrates has not been reported. Using electropolishing of aluminum, we are able to generate nanostructured surfaces that produce enhanced spectroscopic detection of molecules in the UV. Aluminum is a natural choice for substrate composition as it exhibits a relatively large quality factor in the UV. We have fabricated electropolished aluminum films with nanometer scale roughness and have studied UV-excited fluorescence enhancement from submonolayer coverage of tryptophan on these substrates using a UV-laser based spectrometer. Quantitative dosing by dip-coating was used to deposit known surface concentrations of the aromatic amino acid tryptophan, so that fluorescence enhancement could be evaluated. Compared to a dielectric substrate (surface-oxidized silicon), we observe a 180-fold enhancement in the total fluorescence emitted by tryptophan on electropolished aluminum under photobleaching conditions, allowing detection of sub-monolayer coverages of molecules essential for development of biosensor technologies.
Poster Session
icon_mobile_dropdown
Nanofocusing of UV light in aluminum V-grooves
Using the Finite Difference Time Domain method, this paper investigates electromagnetic nanofocusing of ultraviolet light transmitting through V-groove like waveguide in Aluminum via simulation. Parametric study of the field enhancement around the V-groove tip area has been conducted via the change of groove depth, width, and the tip angle. Electric field threshold at the tip of the V-groove in the Ultraviolet wavelength has attracted attention and further effort has been placed to find an origination of this phenomenon. Adiabatic condition and attenuation has been taken into consideration as the possible explanation. Through simplification of the V-groove model into its corresponding Metal-Dielectric-Metal (MDM) waveguide at each distance from the tip, numerical calculations have been taken to figure out the impact of waveguide width on the adiabatic parameter, propagation constant and propagation length. Comparison and analysis for those curves with respect to typical Ultraviolet wavelength is conducted and discussed.