Proceedings Volume 9852

Fiber Optic Sensors and Applications XIII

cover
Proceedings Volume 9852

Fiber Optic Sensors and Applications XIII

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 28 June 2016
Contents: 13 Sessions, 32 Papers, 0 Presentations
Conference: SPIE Commercial + Scientific Sensing and Imaging 2016
Volume Number: 9852

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9852
  • 40th Anniversary of the Fiber Optic Gyro I
  • 40th Anniversary of the Fiber Optic Gyro II
  • 40th Anniversary of the Fiber Optic Gyro IV
  • Fiber Bragg Grating Sensors I
  • Fiber Bragg Grating Sensors II
  • Fiber Bragg Grating Sensors III
  • Distributed Fiber Optic Sensors I
  • Distributed Fiber Optic Sensors II
  • Fiber Optic Chemical and Gas Sensors I
  • Fiber Optic Chemical and Gas Sensors II
  • New Avenues in Fiber Optic Sensors II
  • New Avenues in Fiber Optic Sensors III
Front Matter: Volume 9852
icon_mobile_dropdown
Front Matter: Volume 9852
This PDF file contains the front matter associated with SPIE Proceedings Volume 9852, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
40th Anniversary of the Fiber Optic Gyro I
icon_mobile_dropdown
The early history of the closed loop fiber optic gyro and derivative sensors at McDonnell Douglas, Blue Road Research and Columbia Gorge Research
On September 29, 1977 the first written disclosure of a closed loop fiber optic gyro was witnessed and signed off by four people at McDonnell Douglas Astronautics Company in Huntington Beach, California. Over the next ten years a breadboard demonstration unit, and several prototypes were built. In 1987 the fundamental patent for closed loop operation began a McDonnell Douglas worldwide licensing process. Internal fiber optic efforts were redirected to derivative sensors and inventions. This included development of acoustic, strain and distributed sensors as well as a Sagnac interferometer based secure fiber optic communication system and the new field of fiber optic smart structures. This paper provides an overview of these activities and transitions.
Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is!
Hervé C. Lefèvre
This 40th anniversary is the opportunity to recall how fascinating is the fiber-optic gyro with its potential perfection. Pure unaided strapdown inertial navigation yielding drift of less than one nautical mile in a month has been demonstrated in a laboratory. This paper also adds several comments about points that could be better known and should be outlined.
Recent developments in laser-driven and hollow-core fiber optic gyroscopes
M. J. F. Digonnet, J. N. Chamoun
Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG’s scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.
Fiber optic gyros from research to production
Fiber optic gyros are a great success story for a new inertial measurement technology that successfully transitioned from the laboratory in 1975 to production in 1992. This paper will review their research, advanced development, product development, and production transfer. The focus of the paper will be this cycle from Stanford University to Northrop Grumman.
40th Anniversary of the Fiber Optic Gyro II
icon_mobile_dropdown
Fiber optic gyro development at Honeywell
Glen A. Sanders, Steven J. Sanders, Lee K. Strandjord, et al.
Two major architectures of fiber optic gyroscopes have been under development at Honeywell in recent years. The interferometric fiber optic gyro (IFOG) has been in production and deployment for various high performance space and marine applications. Different designs, offering very low noise, ranging from better than navigation grade to ultra-precise performance have been tested and produced. The resonator fiber optic gyro (RFOG) is also under development, primarily for its attractive potential for civil navigation usage, but also because of its scalability to other performance. New techniques to address optical backscatter and laser frequency noise have been developed and demonstrated. Development of novel, enhanced RFOG architectures using hollow core fiber, silicon optical bench technology, and highly stable multifrequency laser sources are discussed.
Current status of fiber optic gyro efforts for space applications in Japan
Shinji Mitani, Tadahito Mizutani, Shin-ichiro Sakai
In response to the maturation of Fiber Optic Gyro technologies, FOGs are being used in various applications. Also in Japan, the demand for FOG is high, and is used in some space applications. In this paper, we introduce examples of Japanese products that apply to space-use. It also describes some efforts for high-grade navigation use in Japan.
20 years of KVH fiber optic gyro technology: the evolution from large, low performance FOGs to compact, precise FOGs and FOG-based inertial systems
Jay Napoli
Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH’s unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation’s Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core – critical to the FOG’s performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.
Technological advancements at Al Cielo Inertial Solutions (ACIS)
Meir Rosilio, Lisa Koenigsberg, Noam Pasternak, et al.
This paper presents progress on the standard logic circuit and controller design typically used in a closed loop Fiber-Optic Gyroscope that offers substantially improved performance. The standard circuit, with decades of heritage, is shown to underperform under particular Rate profiles and requirements. The optimized controller design is described; Analysis and measurements are presented. The results show improvements of up to three orders of magnitude in angle measurement accuracy. In addition to accuracy, performance under high dynamic environments is likely to be improved.
40th Anniversary of the Fiber Optic Gyro IV
icon_mobile_dropdown
Advances in optical fibers for fiber sensors
A range of new specialty optical fibers have been developed for fiber sensors including twin hole/side hole fibers for pressure sensing, multicore fibers for 3D shape sensing and DTS/DSS sensing and polarizing, doped polarizing and spun polarizing fibers for polarimetric sensors.
Fiber optic gyro development at Fibernetics
Ralph A. Bergh, Leif Arnesen, Craig Herdman
Fiber optic gyroscope based inertial sensors are being used within increasingly severe environments, enabling unmanned systems to sense and navigate in areas where GPS satellite navigation is unavailable or jammed. A need exists for smaller, lighter, lower power inertial sensors for the most demanding land, sea, air, and space applications.

Fibernetics is developing a family of inertial sensor systems based on our closed-loop navigation-grade fiber optic gyroscope (FOG). We are making use of the packaging flexibility of the fiber to create a navigation grade inertial measurement unit (IMU) (3 gyroscopes and 3 accelerometers) that has a volume of 102 cubic inches. We are also planning a gyrocompass and an inertial navigation system (INS) having roughly the same size. In this paper we provide an update on our development progress and describe our modulation scheme for the Sagnac interferometers. We also present a novel multiplexed design that efficiently delivers source light to each of the three detectors. In our future development section we discuss our work to improve FOG performance per unit volume, specifically detailing our focus in utilizing a multicore optical fiber.
Fiber Bragg Grating Sensors I
icon_mobile_dropdown
New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays
Stephen J. Mihailov, Dan Grobnic, Robert B. Walker, et al.
Fiber Bragg gratings (FBG) arrays in silica based optical fibers are increasingly used in applications involving system monitoring in extreme high temperature environments. Where operational temperatures are < 600 °C, traditional UVlaser inscribed FBGs are not appropriate since the induced Type I index change is erased. Instead two competing FBG technologies exist: 1) regenerative FBGs resulting from high temperature annealing of a UV-laser written grating in a hydrogen loaded fiber and 2) FBGs written with femtosecond infrared pulse duration radiation (fs-IR), either using the point-by-point method or using the phase mask approach. Regenerative gratings possess low reflectivity and are cumbersome to produce, requiring high temperature processing in an oxygen free environment. Multiple pulse Type II femtosecond IR laser induced gratings made with a phase mask, while having very good thermal stability, also tend to have high insertion loss (~ 1dB/grating) limiting the number of gratings that can be concatenated in a sensor array. Recently it has been shown that during multiple pulse type II thermally stable fs-IR FBG production, two competing process occur: an initial induced fs-IR type I FBG followed by a thermally stable high insertion loss type II FBG. In this paper, we show that if only a type I FBG is written using type II intensity conditions but limited numbers of pulses and then annealed above 600 °C, the process results in a type II grating that is stable up to 1000 °C with very low insertion loss ideal for an FBG sensor array.
Sensing delamination in epoxy encapsulant systems with fiber Bragg gratings
Brad H. Jones, Garth D. Rohr, Amy K. Kaczmarowski M.D.
Fiber Bragg gratings (FBGs) are well-suited for embedded sensing of interfacial phenomena in materials systems, due to the sensitivity of their spectral response to locally non-uniform strain fields. Over the last 15 years, FBGs have been successfully employed to sense delamination at interfaces, with a clear emphasis on planar events induced by transverse cracks in fiber-reinforced plastic laminates. We have built upon this work by utilizing FBGs to detect circular delamination events at the interface between epoxy films and alumina substrates. Two different delamination processes are examined, based on stress relief induced by indentation of the epoxy film or by cooling to low temperature. We have characterized the spectral response pre- and post-delamination for both simple and chirped FBGs as a function of delamination size. We show that delamination is readily detected by the evolution of a non-uniform strain distribution along the fiber axis that persists after the stressing condition is removed. These residual strain distributions differ substantially between the delamination processes, with indentation and cooling producing predominantly tensile and compressive strain, respectively, that are well-captured by Gaussian profiles. More importantly, we observe a strong correlation between spectrally-derived measurements, such as spectral widths, and delamination size. Our results further highlight the unique capabilities of FBGs as diagnostic tools for sensing delamination in materials systems.
Interrogation and mitigation of polarization effects for standard and birefringent FBGs
Optical sensors based on Fiber Bragg Gratings (FBGs) are used in several applications and industries. Several inscription techniques and type of fibers can be used. However, depending on the writing process, type of fiber used and the packaging of the sensor a Polarization Dependent Frequency Shift (PDFS) can often be observed with polarized tunable laser based optical interrogators. Here we study the PDFS of the FBG peak for the different FBG types. A PDFS of <1pm up to >20pm was observed across the FBGs. To mitigate and reduce this effect we propose a polarization mitigation technique which relies on a synchronous polarization switch to reduce the effect typically by a factor greater than 4. In other scenarios the sensor itself is designed to be birefringent (Bi-FBG) to allow pressure and/or simultaneous temperature and strain measurements. Using the same polarization switch we demonstrate how we can interrogate the Bi-FBGs with high accuracy to enable high performance of such sensors to be achievable.
High-speed system for FBG-based measurements of vibration and sound
Devrez M. Karabacak, Selwan K. Ibrahim, Yorick Koumans, et al.
Fiber Bragg Gratings (FBGs) allow for optical detection of localized physical effects without the need to couple the light out and back into a fiber, enabling robust and multiplexed sensor systems. The need of combining wide bandwidth and high resolution for dynamic sensing applications, like acoustics and vibrations, has presented significant challenges for FBG-based solutions. Here, we present a novel FBG-based measurement system enabled by using high-speed and highprecision tunable laser-based optical interrogation scheme. Multiple levels of integrated wavelength referencing coupled with low-noise high-speed electronics allow for spectral feature tracking at a resolution of <20 fm at kHz-frequencies. In combination with fiber accelerometers that employ unique force transmission mechanisms, amplifying strain on the Bragg grating and increasing the resonance frequency of the transducer, resolutions <10 μg (150 Hz bandwidth) to submg resolution in kHz-frequencies is achieved. Similarly, compact wavelength-multiplexed hydrophones with wide range linearity and dynamic range, sub-Pa resolution and flat-sensitivity down to static pressures are demonstrated. The sensors are demonstrated to be customizable to application-specific requirements, and designed to be scalable to large quantity reproducible manufacturing. In contrast to interferometry-based solutions, the tunable swept-laser detection scheme in combination with strain-based FBG sensors provides a cost-effective system that allows for easy scaling of sensor counts per fiber with multiple fibers being simultaneously recorded. Finally, the integrated high accuracy triggering and hybrid measurement capabilities present the potential to monitor sounds and vibrations in a wide range of applications from seismic surveys to machine and structural monitoring applications in harsh environments.
Fiber Bragg Grating Sensors II
icon_mobile_dropdown
Field trial of a multi-parameters' monitoring network using FBGs adapted directly in the conventional instruments of dams
Joao B. Rosolem, Claudio A. Hortencio, Claudio Floridia, et al.
This paper presents the results of a field test of a multi-parameters' monitoring network using FBGs adapted directly in the conventional instruments of two dams which are in full operational capability. We presented the details of the design and tests of the sensor’s network, such as, the sensors adaptation, the resolution comparison between the conventional instruments and the FBGs, the network topology, the spectral occupancy distribution considering the parameters optical bandwidth and also the temperature compensation for FBGs, the number of sensors by fiber and the performance of the FBGs sensors compared with the conventional instruments used in the Dams.
Development and field trial of a FBG-based magnetic sensor for large hydrogenerators
João P. V. Fracarolli, João B. Rosolem, Elias K. Tomiyama, et al.
We propose a passive optical sensor for online magnetic field monitoring in large hydrogenerators, based on FBG (Fiber Bragg Grating) technology and a magnestostrictive material (Terfenol-D). The objective of this sensor is to detect faults in the rotor windings due to inter turn short-circuits. This device is packaged in a novel rod-shaped enclosure, allowing it to be easily installed on the ventilation ducts of the stator of the machine. This sensor was developed and tested in laboratory and it has been evaluated in a field test on a 200 MVA, 60 poles hydrogenerator.
Simultaneous temperature and tension monitoring of a multi-layer composite film with embedded Hi-Bi optical fiber Bragg gratings
Guanghui Chen, Jianbo Sha, Ming Zhao, et al.
Hi-Bi FBGs were employed and embedded in multi-layer composite films (Tedlar + Dacron +Mylar) to monitor temperature and tension. The temperature and tension characteristics of those embedded FBGs were demonstrated quantitatively. The Bragg wavelengths of embedded FBGs shift linearly with the temperature and tension loading on the multi-layer composite films. The slow-axis mode and the fast-axis mode of the Hi-Bi FBGs have different temperature sensitivity and tension sensitivity. The Hi-Bi FBGs have higher temperature sensitivity at low temperature than that at high temperature. Compared with non-embedded, the tension sensitivity of the embedded Hi-Bi FBG increased from 0.01424nm/N and 0.01439nm/N to 0.01516nm/N and 0.01532nm/N, respectively corresponding to the slow-axis mode and the fast-axis mode.
Fiber Bragg Grating Sensors III
icon_mobile_dropdown
Ultrafast laser inscribed fiber Bragg gratings for sensing applications
Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.
Ultrafast fiber grating sensor systems for velocity, position, pressure, and temperature measurements
In 2006 an approach was developed that used chirped fiber gratings in combination with a high speed read out configuration to measure the velocity and position of shock waves after detonation of energetic materials. The first demonstrations were conducted in 2007. Extensions of this technology were made to measure pressure and temperature as well as velocity and position during burn, deflagration and detonation. This paper reviews a series of improvements that have been made by Columbia Gorge Research, LLC, Lawrence Livermore National Lab and Los Alamos National Lab in developing and improving this technology.
Distributed Fiber Optic Sensors I
icon_mobile_dropdown
Distributed temperature measurement using a dual-core fiber with an integrated miniature turn-around
Xiaoguang Sun, Jie Li, Michael J. Hines
Double-ended configuration is commonly deployed in Raman-based distributed temperature sensing (DTS) systems to achieve a high accuracy in temperature measurement. To show the feasibility of multicore optical fiber (MCF) in this application, we will demonstrate distributed temperature measurements using a sensor consisting of a dual-core MCF and an integrated, distal end turn-around in a doubled-ended configuration. The dual-core fiber and turn-around, both coated with polyimide, are suitable for high temperature use. Additionally, the device is ideal for long length, distributed temperature detection in confined spaces, with a finished outer diameter of less than 300 μm. The results show that wavelength dependent loss (WDL) is easily removed in the setup and an accurate temperature measurement can be achieved reliably over a wide temperature range.
Distributed temperature sensing system using a commercial OTDR and a standard EDFA with controlled gain
Fabio R. Bassan, Felipe C. Salgado, Fabiano Fruett, et al.
The distributed temperature sensor system based in the spontaneous Raman backscattering is demonstrated for the first time to our knowledge, using a commercial OTDR (Optical Time Domain Reflectometer) and a standard erbium doped fiber amplifier (EDFA) with controlled gain. We evaluated this approach in a 30 km of single mode fiber using an OTDR pulse width of 100 ns and an EDFA with 17 dBm of output power.
Distributed Fiber Optic Sensors II
icon_mobile_dropdown
Optical frequency domain reflectometry: principles and applications in fiber optic sensing
Optical Frequency Domain Reflectometry (OFDR) is the basis of an emerging high-definition distributed fiber optic sensing (HD-FOS) technique that provides an unprecedented combination of resolution and sensitivity. OFDR employs swept laser interferometry to produce strain or temperature vs. sensor length with fiber Bragg gratings (FBGs) or Rayleigh scatter as the source signal. We look at the influence of HD-FOS on design and test of new, lighter weight, stronger and more fuel efficient vehicles. Examples include defect detection, model verification and structural health monitoring of composites, and temperature distribution monitoring of battery packs and inverters in hybrid and electric powertrains.
A rapid demodulation method for optical carrier based microwave interferometer
Zhen Chen, Gerald Hefferman, Tao Wei
This paper presents a rapid signal processing approach for OCMI system, which could significantly reduce the complexity of computations while maintaining decent performances. A direct phase demodulator can be pre-calibrated and applied to extract the absolute phase change to target reflectors at different locations, where the strain change can be found distributedly. Theoretical framework was conducted and to demo the concept, a strain test was performed with ultra-weak reflectors (-70 dB) under the OCMI system. The proposed method was applied to extract the distributed stain change along the fiber under test. Compared with the previous proposed method, no FIR filters and Fourier transform are involved. This algorithm holds the potential suitable for dynamic OCMI distributed sensing system.
A novel data adaptive detection scheme for distributed fiber optic acoustic sensing
İbrahim Ölçer, Ahmet Öncü
We introduce a new approach for distributed fiber optic sensing based on adaptive processing of phase sensitive optical time domain reflectometry (Φ-OTDR) signals. Instead of conventional methods which utilizes frame averaging of detected signal traces, our adaptive algorithm senses a set of noise parameters to enhance the signal-to-noise ratio (SNR) for improved detection performance. This data set is called the secondary data set from which a weight vector for the detection of a signal is computed. The signal presence is sought in the primary data set. This adaptive technique can be used for vibration detection of health monitoring of various civil structures as well as any other dynamic monitoring requirements such as pipeline and perimeter security applications.
Imaging 3D strain field monitoring during hydraulic fracturing processes
Rongzhang Chen, Mohamed A. S. Zaghloul, Aidong Yan, et al.
In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.
Fiber Optic Chemical and Gas Sensors I
icon_mobile_dropdown
Optical fibre gas detections systems
This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing – notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures – single point, multiple point and distributed – enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.
Fiber Optic Chemical and Gas Sensors II
icon_mobile_dropdown
Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes
The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.
New Avenues in Fiber Optic Sensors II
icon_mobile_dropdown
Temperature-insensitive pressure or strain sensing technology with fiber optic hybrid Sagnac interferometer
Yuanhong Yang, Lin Lu, Shuo Liu, et al.
The transmission spectrum characteristic of two-segment polarization maintaining fibers Sagnac interferometer was investigated and simulated in detail and a temperature-insensitive pressure or strain sensing technology was proposed. An experimental hybrid Sagnac interferometer was built and the solid core polarization maintaining photonic crystal fiber was taken as the sensing probe. The side pressure sensitive coefficients and the temperature crosstalk drift were measured and compared. The experimental results show that the side pressure sensitive coefficient was ~0.2877 nm/N and the temperature drift was less than 0.1 pm/°C.
New Avenues in Fiber Optic Sensors III
icon_mobile_dropdown
Long-term stability testing of optical fibre Fabry-Perot temperature sensors
Dimitrios Polyzos, Mathew Jinesh, William N. MacPherson, et al.
Applications of fibre optic sensors at high temperatures have gained a huge interest recently, as they appeared to be suitable for temperature recording in harsh environments. In this paper, we are demonstrating two intrinsic Fabry-Perot (F-P) fibre optic sensors for high temperature monitoring. The sensors are consisting of a 125μm diameter single mode fibre (SMF28) and a 125μm diameter PCF ESM-12B pure fused silica fibre spliced to a SMF28, respectively. The result was a low finesse optical SMF-Cr-SMF, and SMF-Cr-PCF, sensor with cavity lengths varying from 50μm to 100μm. Both types of Fabry-Perot sensors were tested in a tube furnace over a temperature range from room temperature up to 1100°C. Following a number of annealing cycles, between the above mentioned temperatures range, very good repeatability of the phase response was achieved. During the cycling process, thermal stress relief takes place which makes the sensors suitable for temperature testing at temperatures just in excess of 1000°C. After initial cycling the sensors are subjected to long term stability tests. The phase response is stable, less than 4°C, over a period of 5 days at a temperature of 1050°C for both sensors. The temperature resolution is around 3°C.
Laser heated pedestal growth system commissioning and fiber processing
Michael Buric, M. J. Yip, Ben Chorpening, et al.
A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.
A fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot cavity
Guigen Liu, Qiwen Sheng, Geraldo Resende Lisboa Piassetta , et al.
A hot-wire fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot interferometer (FPI) has been proposed and demonstrated in this paper. The operation of the sensor is based on the convective heat loss to water from a heated silicon FPI attached to the cleaved enface of a piece of single-mode fiber. The flow-induced change in the temperature is demodulated by the spectral shifts of the reflection fringes. An analytical model based on the FPI theory and heat transfer analysis has been developed for performance analysis. Numerical simulations based on finite element analysis have been conducted. The analytical and numerical results agree with each other in predicting the behavior of the sensor. Experiments have also been carried to demonstrate the sensing principle and verify the theoretical analysis. Investigations suggest that the sensitivity at low flow rates are much larger than that at high flow rates and the sensitivity can be easily improved by increasing the heating laser power. Experimental results show that an average sensitivity of 52.4 nm/(m/s) for the flow speed range of 1.5 mm/s to 12 mm/s was obtained with a heating power of ~12 mW, suggesting a resolution of ~1 μm/s assuming a wavelength resolution of 0.05 pm.