Proceedings Volume 9730

Components and Packaging for Laser Systems II

cover
Proceedings Volume 9730

Components and Packaging for Laser Systems II

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 30 June 2016
Contents: 11 Sessions, 36 Papers, 0 Presentations
Conference: SPIE LASE 2016
Volume Number: 9730

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • 2μm Laser Components: European ISLA Program
  • MID-IR Laser Components and Packaging
  • Laser Diode Packaging I: Joint Session with Conferences 9730 and 9733
  • Laser Diode Packaging II
  • Laser Diode Packaging III
  • Emerging Laser Components
  • Advanced Laser Packaging Solutions
  • Components and Packaging for Ultrafast Lasers
  • Components and Packaging for Laser Beam Engineering
  • Components and Packaging for High Power/Energy Lasers
  • Poster Session
2μm Laser Components: European ISLA Program
icon_mobile_dropdown
Integrated disruptive components for 2µm fibre lasers (ISLA): project overview and passive component development
In this paper, an overview of the EU FP7 project ISLA (Integrated disruptive componentS for 2 μm fibre Lasers) is given. The aim of ISLA was to develop a set of “building block” components and a “tool-kit” of processes to define an integrated modular common platform for two micron fibre lasers consisting of compatible and self-consistent active and passive fibres, fused fibre couplers and combiners, fibre-coupled isolators, modulators and high power pump laser diodes. We also present results from our work on developing passive components for 2 μm fibre lasers. This includes high power pump combiners that have been tested up to 0.5 kW and combiners for in-band pumping of holmium lasers. Couplers for use as splitters, power monitors and wavelength division multiplexers have also been demonstrated. Wideband couplers, with a coupling ratio that only varies ± 12% over 400 nm, have also been developed to exploit the wide tuning range possible with thulium fibre lasers. Research into different isolator materials was also conducted to find materials with large Verdet constants to be used in 2 μm isolators. Fibre-coupled isolators were then manufactured using a selection of these materials. Isolators that had insertion losses of < 1 dB and isolation of > 35 dB were demonstrated using PM and non-PM fibres. In the PM isolators, PER > 23 dB was achieved.
Acousto-optic devices for operation with 2µm fibre lasers
Fibre lasers operating in the 2μm region are of increasing interest for a range of applications, including laser machining and biomedical systems. The large mode area compared to 1μm fibre lasers combined with operation in an “eye-safe” region of the spectrum makes them particularly attractive. When developing fibre lasers at 1μm and 1·5μm manufacturers were able to call upon enabling technologies used by the telecoms industry, but at longer wavelengths, including 2μm, many such components are either unavailable or immature. We report on recent developments of Acousto-Optic Modulators and Tunable Filters that are specifically optimised for use with fibre systems operating at or around 2μm. AO devices are interesting due to their ability to conserve spatial-coherence, making them appropriate for use with single-mode optical fibres. We describe how the choice of interaction medium is an important consideration, particularly affecting the drive power and the polarisation behaviour of the device – the latter being an important parameter when used in a fibre system. We also describe two designs of AO Tunable Filter intended for laser tuning. Both designs have been demonstrated intracavity in 2μm fibre lasers. The first gives exceptionally narrow resolution (δλ/λ<0·1%). The second design is of a novel type of AOTF where a matched pair of AOTFs is configured to give a substantially net zero frequency-shift with little or no loss of pointing stability, any minor deviations in manufacture being self-compensated. Furthermore, small controlled frequency-shifts (up to about 10kHz) may be introduced with little or no detriment to the alignment of the system.
MID-IR Laser Components and Packaging
icon_mobile_dropdown
Mid-IR fused fiber couplers
G. Stevens, T. Woodbridge
We present results from our recent efforts on developing single-mode fused couplers in ZBLAN fibre. We have developed a custom fusion workstation for working with lower melting temperature fibres, such as ZBLAN and chalcogenide fibres. Our workstation uses a precisely controlled electrical heater designed to operate at temperatures between 100 – 250°C as our heat source. The heated region of the fibers was also placed in an inert atmosphere to avoid the formation of microcrystal inclusions during fusion. We firstly developed a process for pulling adiabatic tapers in 6/125 μm ZBLAN fibre. The tapers were measured actively during manufacture using a 2000 nm source. The process was automated so that the heater temperature and motor speed automatically adjusted to pull the taper at constant tension. This process was then further developed so that we could fuse and draw two parallel 6/125 μm ZBLAN fibres, forming a single-mode coupler. Low ratio couplers (1-10%) that could be used as power monitors were manufactured that had an excess loss of 0.76 dB. We have also manufactured 50/50 splitters and wavelength division multiplexers (WDMs). However, the excess loss of these devices was typically 2 - 3 dB. The increased losses were due to localised necking and surface defects forming as the tapers were pulled further to achieve a greater coupling ratio. Initial experiments with chalcogenide fibre have shown that our process can be readily adapted for chalcogenide fibres. A 5% coupler with 1.5 dB insertion loss was manufactured using commercial of the shelf (COTS) fibres.
Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture
Leo Missaggia, Christine Wang, Michael Connors, et al.
There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.
Laser Diode Packaging I: Joint Session with Conferences 9730 and 9733
icon_mobile_dropdown
High power diode laser array development using completely indium free packaging technology with narrow spectrum
Dong Hou, Jingwei Wang, Lijun Gao, et al.
The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.
Blue-emitting external cavity laser diode
Hong Man Na, Hong Joo Song, Jong Hwan Park, et al.
An front facet anti-reflection coated solitary laser diode is operated in the external cavity diode laser (ECDL). For wavelength stabilization and narrow spectral width, the diffraction grating is used in a Littrow configuration. At an injection current of 280 mA, a output power of 35mW with a slope efficiency of 0.22 W/A and the bandwidth of 80 pm at a wavelength of 457 nm. In this paper, the tunable external cavity diode laser module is designed with an overall size of 18 mm x 24 mm x 14 mm. ECDL showed excellent wavelength locking behavior without a non-shift of the peak wavelength.
Feedback module for evaluating optical-power stabilization methods
John Downing
A feedback module for evaluating the efficacy of optical-power stabilization without thermoelectric coolers (TECs) is described. The module comprises a pickoff optic for sampling a light beam, a photodiode for converting the sample power to electrical current, and a temperature sensor. The components are mounted on an optical bench that makes accurate (0.05°) beam alignment practical as well as providing high thermal-conductivity among the components. The module can be mounted on existing light sources or the components can be incorporated in new designs. Evaluations of optical and electronic stabilization methods are also reported. The optical method combines a novel, weakly reflective, weakly polarizing coating on the pickoff optic with a photodiode and an automatic-power-control (APC) circuit in a closed loop. The shift of emitter wavelength with temperature, coupled with the wavelength-dependent reflectance of the pickoff optic, enable the APC circuit to compensate for temperature errors. In the electronic method, a mixed-signal processor in a quasiclosed loop generates a control signal from temperature and photocurrent inputs and feeds it back to an APC circuit to compensate for temperature errors. These methods result in temperature coefficients less than 20 ppm/°C and relative rms power equal to 05% for the optical method and 0.02% for the electronic method. The later value represents an order of magnitude improvement over rms specifications for cooled, laser-diode modules and a five-fold improvement in wall-plug efficiency is achieved by eliminating TECs.
Laser Diode Packaging II
icon_mobile_dropdown
Teradiode's high brightness semiconductor lasers
Robin K. Huang, Bien Chann, James Burgess, et al.
TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, <0.08 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. Our TeraBlade industrial platform achieves world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.
Packaging of hard solder 500W QCW diode laser array
The package structure critically influences the major characteristics of diode laser, such as thermal behavior, output power, wavelength and smile effect. In this work, a novel micro channel cooler (MCC) for stack array laser with good heat dissipation capability and high reliability is presented. Numerical simulations of thermal management with different MCC structure are conducted and analyzed. Based on this new MCC packaging structure, a series of QCW 500W high power laser arrays with hard solder packaging technology has been fabricated. The performances of the laser arrays are characterized. A narrow spectrum of 3.12 nm and an excellent smile value are obtained. The lifetime of the laser array is more than 1.38×109 shots and still ongoing.
Fully automated hybrid diode laser assembly using high precision active alignment
Gunnar Böttger, Daniel Weber, Friedemann Scholz, et al.
Fraunhofer IZM, Technische Universität Berlin and eagleyard Photonics present various implementations of current micro-optical assemblies for high quality free space laser beam forming and efficient fiber coupling. The laser modules shown are optimized for fast and automated assembly in small form factor packages via state-of-the-art active alignment machinery, using alignment and joining processes that have been developed and established in various industrial research projects. Operational wavelengths and optical powers ranging from 600 to 1600 nm and from 1 mW to several W respectively are addressed, for application in high-resolution laser spectroscopy, telecom and optical sensors, up to the optical powers needed in industrial and medical laser treatment.
Approaching improved adhesive bonding repeatability
Christian Schlette, Tobias Müller, Jürgen Roβmann, et al.
Today, the precision of micro-optics assembly is mostly limited by the accuracy of the bonding process ― and in the case of adhesive bonding by the prediction and compensation of adhesive shrinkage during curing. In this contribution, we present a novel approach to address adhesive bonding based on hybrid control system theory. In hybrid control, dynamic systems are described as "plants" which produce discrete and/or continuous outputs from given discrete and/or continuous inputs, thus yielding a hybrid state space description of the system. The task of hybrid controllers is to observe the plant and to generate a discrete and/or continuous input sequence that guides or holds the plant in a desired target state region while avoiding invalid or unwanted intermediate states. Our approach is based on a series of experiments carried out in order to analyze, define and decouple the dependencies of adhesive shrinkage on multiple parameters, such as application geometries, fixture forces and UV intensities. As some of the dependencies describe continuous effects (e.g. shrinkage from UV intensity) and other dependencies describe discrete state transitions (e.g. fixture removal during curing), the resulting model of the overall bonding process is a hybrid dynamic system in the general case. For this plant model, we then propose a concept of sampling-based parameter search as a basis to design suitable hybrid controllers, which have the potential to optimize process control for a selection of assembly steps, thus improving the repeatability of related production steps like beam-shaping optics or mounting of turning mirrors for fiber coupling.
980nm diode laser pump modules operating at high temperature
Jenna Campbell, Tadej Semenic, Paul Leisher, et al.
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.
Laser Diode Packaging III
icon_mobile_dropdown
Beam shaping concepts for kW-class CW and QCW diode lasers
Andreas Unger, Willhelm Fassbender, Holger Müntz, et al.
In modern diode lasers beam shaping of the highly asymmetric laser beam, which exits the front facet of the semiconductor laser material, is a crucial step towards cost efficient high brightness laser modules which in turn can be further combined towards kW-class diode lasers and can be efficiently fiber coupled. In order to scale up the power of a single laser module in an economic way, high fill factor laser bars are employed. The increased power density from such a laser bar requires improved cooling technologies. On the other hand the increased fill factor of the bar makes advanced beam shaping necessary to be able to achieve small focal spot sizes and couple the laser module efficiently into optical fibers. Finally, to be able to mass produce the laser modules, it is desirable to design the module in a way that allows automated packaging and optics alignment. In this talk, the beam shaping concepts developed at DILAS for high fill factor bars are presented. Starting from optical simulation and choice of optical elements the laser modules incorporating these bars are presented. The concepts developed enable very compact laser modules of up to 2kW of power at a single wavelength with beam qualities of less than 40mm x mrad. Optionally these modules can be wavelength stabilized via external feedback. The packaging technology developed enables the automated alignment of the optics and cooling is DI-water free. Based on the same concepts very compact free space and fiber coupled QCW packages are presented as well.
Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers
Xiaochen Jiang, Rui Liu, Yanyan Gao, et al.
Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.
Performance improvements to wavelength stabilized high power 885nm diode laser modules
M. Hemenway, L. Bao, M. Kanskar, et al.
There is an increasing demand for high power diode laser packages with stabilized wavelength in the range of 878 nm to 888 nm for DPSS laser pumping applications. In this paper we present nLIGHT’s most recent development of wavelength-stabilized high power, single emitter laser diode packages, elementTM , for DPSS laser pumps. We will report on how we have scaled single emitter power from 10 W per emitter with our prior generation of 200 μm wide and 3.8 mm long devices to 15 W per emitter for next generation of 5 mm cavity length device for 200 μm - 0.22 NA fiber products. The improvement in power at the chip-on-submount level results in approximately 40% increase in wavelength-stabilized power out of 200 μm fiber excited with a 0.19 NA beam, compared to the current generation elementTM products. Additionally, we will report on the improvements to wavelength-stabilization utilizing volume Bragg gratings, and chip-on-submount reliability for these new 885 nm devices, which drives the overall package reliability.
Emerging Laser Components
icon_mobile_dropdown
Modeling and optimization of multimode fused fiber combiners
Yu Liu, Hao Yu, Alessio Califano, et al.
An effective method to predict the performance of multimode fused fiber combiners is presented. The realization of high power devices is strongly affected by the specific application, for instance whether used in fiber or in direct-diode lasers, and thus usually requires costly and time-consuming trial-and-error procedures. The proposed approach, which is based on ray tracing and statistical analysis, allows analyzing a-priori the impact of fiber dimensions, combiner geometry, glass material properties and laser beam quality on the coupling efficiency, therefore reducing the fabrication runs. Examples of application to 7-to-1 and 19-to-1 combiners are given and compared with experimental results.
Key optical components for spaceborne lasers
J. Löhring, M. Winzen, H. Faidel, et al.
Spaceborne lidar (light detection and ranging) systems have a large potential to become powerful instruments in the field of atmospheric research. Obviously, they have to be in operation for about three years without any maintenance like readjusting. Furthermore, they have to withstand strong temperature cycles typically in the range of -30 to +50 °C as well as mechanical shocks and vibrations, especially during launch. Additionally, the avoidance of any organic material inside the laser box is required, particularly in UV lasers. For atmospheric research pulses of about several 10 mJ at repetition rates of several 10 Hz are required in many cases. Those parameters are typically addressed by DPSSL that comprise components like: laser crystals, nonlinear crystals in pockels cells, faraday isolators and frequency converters, passive fibers, diode lasers and of course a lot of mirrors and lenses. In particular, some components have strong requirements regarding their tilt stability that is often in the 10 μrad range. In most of the cases components and packages that are used for industrial lasers do not fulfil all those requirements. Thus, the packaging of all these key components has been developed to meet those specifications only making use of metal and ceramics beside the optical component itself. All joints between the optical component and the laser baseplate are soldered or screwed. No clamps or adhesives are used. Most of the critical properties like tilting after temperature cycling have been proven in several tests. Currently, these components are used to build up first prototypes for spaceborne systems.
Advanced Laser Packaging Solutions
icon_mobile_dropdown
Cost-effective manufacturing of compact TDLAS sensors for hazardous area applications
Michael B. Frish, Mathew C. Laderer, Clinton J. Smith, et al.
Tunable Diode Laser Absorption Spectroscopy (TDLAS) is finding ever increasing utility for industrial process measurement and control. The technique’s sensitivity and selectivity benefit continuous concentration measurements of specific gas components in complex gas mixtures which are often laden with liquids or solid particulates. Tradeoff options among optical path length, absorption linestrength, linewidth, cross-interferences, and sampling methodology enable sensor designers to optimize detection for specific applications. Emerging applications are demanding increasing numbers of distributed miniaturized sensors at diminishing costs. In these applications, the TDLAS specificity is a key attribute, and its high sensitivity enables novel sampling package designs with short optical path lengths. This paper describes a miniature hermetically-sealed backscatter TDLAS transceiver package designed for high-volume production at acceptable cost. Occupying a volume less than 1in3 and weighing less than 0.06 lb, the transceiver is a key component of TDLAS sensors intended for in-situ measurements of potentially explosive gas mixtures.
Multi-100W class, fully integrated, monolithic ytterbium-doped photonic-crystal fiber amplifier module
Johan Boullet, Germain Guiraud, Giorgio Santarelli, et al.
We report a high performance, fully monolithic 40 μm core, Yb-doped photonic crystal fiber amplifier module. The developed fused combiner allows us to couple 6 pumps of 50 W at 976 nm and 5 W of signal at 1064 nm in the PCF amplifier. We then produced up to 210 W of average power at 1064 nm which is the highest power ever delivered by a fully monolithic PCF amplifier. The module is entirely thermally controlled in a rugged package, and has run more than 25 days at > 100W average power with an excellent peak to peak power stability < 1%.
Model-based adhesive shrinkage compensation for increased bonding repeatability
Tobias Müller, Christian Schlette, Shunmuganathan Lakshmanan, et al.
The assembly process of optical components consists of two phases – the alignment and the bonding phase. Precision - or better process repeatability - is limited by the latter one. The limitation of the alignment precision is given by the measurement equipment and the manipulation technology applied. Today’s micromanipulators in combination with beam imaging setups allow for an alignment in the range of far below 100nm. However, once precisely aligned optics need to be fixed in their position. State o f the art in optics bonding for laser systems is adhesive bonding with UV-curing adhesives. Adhesive bonding is a multi-factorial process and thus subject to statistical process deviations. As a matter of fact, UV-curing adhesives inherit shrinkage effects during their curing process, making offsets for shrinkage compensation mandatory. Enhancing the process control of the adhesive bonding process is the major goal of the activities described in this paper. To improve the precision of shrinkage compensation a dynamic shrinkage prediction is envisioned by Fraunhofer IPT. Intense research activities are being practiced to gather a deeper understanding of the parameters influencing adhesive shrinkage behavior. These effects are of different nature – obviously being the raw adhesive material itself as well as its condition, the bonding geometry, environmental parameters like surrounding temperature and of course process parameters such as curing properties. Understanding the major parameters and linking them in a model-based shrinkage-prediction environment is the basis for improved process control. Results are being deployed by Fraunhofer in prototyping, as well as volume production solutions for laser systems.
Components and Packaging for Ultrafast Lasers
icon_mobile_dropdown
Hybrid high power femtosecond lasers
There is a growing demand for ultrafast laser systems with high average power and repetition rate. We present two hybrid master oscillator power amplifier (MOPA) architectures employing variety of available technologies to achieve 100 W average power femtosecond pulses. We achieved 120 W 820 fs pulses using solid-state oscillator and fiber amplifiers and chirped pulse amplification (CPA) technique (10 μJ pulse energy at 10 MHz and 100 μJ at 400 kHz). In the second experiment, we achieved 160 W 800 fs pulses in a compact system without the standard CPA using solidstate oscillator and single crystal fiber amplifiers. As currently every component experiences some limitations, it is a challenge to choose the optimal architecture with associated components to achieve a desired combination of laser output parameters.
Integrated pulse stretchers for high-energy CPA and OPCPA systems
Pulse stretchers are critical components in chirped pulse amplification (CPA) and optical parametric CPA (OPCPA) laser systems. In CPA systems, pulse stretching and compression is typical accomplished using bulk diffraction gratings; however integrated devices such volume or fiber Bragg gratings can provide similar optical performance with significantly smaller footprint and simplified alignment. In this work, we discuss the use of such integrated devices to stretch a 100 fs pulse to 400 ps with customized third order dispersion for use in a multi-TW Ti:Sapphire system as well as integrated optics to control the pulse duration in pump lasers for OPCPA systems.
Broadband 7 microns OPCPA pumped by a 2 microns picosecond Ho:YLF CPA system
Daniel Sanchez, Michael Hemmer, Matthias Baudisch, et al.
The development of coherent light sources with emission in the mid-IR is currently undergoing a remarkable revolution. The mid-IR spectral range has always been of tremendous interest, mainly to spectroscopists, due to the ability of mid-IR light to access rotational and vibrational resonances of molecules which give rise to superb sensitivity upon optical probing [1-3]. Previously, high energy resolution was achieved with narrowband lasers or parametric sources, but the advent of frequency comb sources has revolutionized spectroscopy by providing high energy resolution within the frequency comb structure of the spectrum and at the same time broadband coverage and short pulse duration [4-6]. Such carrier to envelope phase (CEP) controlled light waveforms, when achieved at ultrahigh intensity, give rise to extreme effects such as the generation of isolated attosecond pulses in the vacuum to extreme ultraviolet range (XUV) [7]. Motivated largely by the vast potential of attosecond science, the development of ultraintense few-cycle and CEP stable sources has intensified [8], and it was recognized that coherent soft X-ray radiation could be generated when driving high harmonic generation (HHG) with long wavelength sources [9-11]. Recently, based on this concept, the highest waveform controlled soft X-ray flux [12] and isolated attosecond pulse emission at 300 eV [13] was demonstrated via HHG from a 1850 nm, sub-2-cycle source [14]. Within strong field physics, long wavelength scaling may lead to further interesting physics such as the direct reshaping of the carrier field [15], scaling of quantum path dynamics [16], the breakdown of the dipole approximation [17] or direct laser acceleration [18]. The experimental development of long wavelength light sources therefore holds great promise in many fields of science and will lead to numerous applications beyond strong field physics and attosecond science. In this paper, we present the first mid-IR optical parametric chirped pulse amplifier (OPCPA) operating at a center wavelength of 7 μm with output parameters suitable already for strong-field experiments. It is also the first demonstration of an Optical Parametric Chirped Pulse Amplifier (OPCPA) using a 2 μm laser pump source which enables the use of non-oxide nonlinear crystals with typically limited transparency at 1 mm wavelength. This new OPCPA system is all-optically synchronized and generates 0.55 mJ energy, CEP stable optical pulses. The pulses are currently compressed to sub-8 optical cycles but support a sub-4 cycle pulse duration. The discrepancy in compression is due to uncompensated higher order phase from the grating compressor which will be addressed in the future.
Components and Packaging for Laser Beam Engineering
icon_mobile_dropdown
Advances in fiber laser spectral beam combining for power scaling
Eric Honea, Robert S. Afzal, Matthias Savage-Leuchs, et al.
Spectral Beam Combining (SBC) of fiber lasers provides a simple, robust architecture for high brightness power scaling beyond the limit of a single fiber. We review recent progress in power scaling and describe what we believe is the highest power SBC fiber demonstration and largest number of fiber lasers combined to date. Here we report results on a fiber SBC system where we achieved > 30 kW by combining 96 individual fiber lasers into a single high brightness beam with a beam quality of M2 = 1.6 x 1.8. The potential for further power scaling at the system level is highlighted with examples of beam combinable fiber laser power scaling.
Engineering of freeform refractive and reflective slow axis collimation solutions
H. Forrer, H. Moser, M. Huber, et al.
High power diode laser arrays or single emitters require either fast or slow axis optical collimation, or both, for further transport or photonic application of high power laser radiation. With varying requirements and conditions for the slow axis collimation and the corresponding engineering solutions, a multitude of options exist from spherical refractive to freeform reflective in single lens elements or in array forms. Here we report on the benefits of reflective slow axis freeform optics and its implementation for the collimation with integrated right angle reflection for compact solutions and miniaturization of module packaging.
Analysis of wavefront distortion for laser beams corrected with volume Bragg gratings in photothermorefractive glass
Fan Gao, Xiang Zhang, Jianjun Zhao, et al.
The wavefront characteristics in the angular filtering based on the transmitting volume Bragg gratings (VBGs) recorded in the photothermorefractive glass are discussed. The wavefront distortions were introduced in the super-Gaussian beam and the wavefront distribution of the diffracted beam was analyzed. Stimulation results show that the low frequency wavefront distribution with the period larger than 40mm is difficult to be corrected while the high frequency wavefront with period smaller than 0.1mm is easy to be corrected with VBGs. The middle-high frequency wavefront distortion with period between 5mm and 0.25mm can be effectively corrected with VBGs with the appropriate angular selectivity, and the PV values can be reduced 167 times and 1000 times than that of modulated beam, respectively.
Advanced centering of mounted optics
Christian Wenzel, Ralf Winkelmann, Rainer Klar, et al.
Camera objectives or laser focusing units consist of complex lens systems with multiple lenses. The optical performance of such complex lens systems is dependent on the correct positioning of lenses in the system. Deviations in location or angle within the system directly affect the achievable image quality. To optimize the achievable performance of lens systems, these errors can be corrected by machining the mount of the lens with respect to the optical axis. The Innolite GmbH and Opto Alignment Technology have developed a novel machine for such center turning operation. A confocal laser reflection measurement sensor determines the absolute position of the optical axis with reference to the spindle axis. As a strong advantage compared to autocollimator measurements the utilized Opto Alignment sensor is capable of performing centration and tilt measurements without changing objectives on any radius surface from 2 mm to infinity and lens diameters from 0.5 mm to 300 mm, including cylinder, aspheric, and parabolic surfaces. In addition, it performs significantly better on coated lenses. The optical axis is skewed and offset in reference to the spindle axis as determined by the measurement. Using the information about the mount and all reference surfaces, a machine program for an untrue turning process is calculated from this data in a fully automated manner. Since the optical axis is not collinear with the spindle axis, the diamond tool compensates for these linear and tilt deviations with small correction movements. This results in a simple machine setup where the control system works as an electronic alignment chuck. Remaining eccentricity of <1 μm and angular errors of < 10 sec are typical alignment results.
Components and Packaging for High Power/Energy Lasers
icon_mobile_dropdown
Packaging of fiber lasers and components for use in harsh environments
Daniel Creeden, Benjamin R. Johnson, Casey Jones, et al.
High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.
Laser surface texturization for high power cladding light stripper
Michael Berisset, Léo Lebrun, Marc Faucon, et al.
We demonstrated herein a new type of cladding light strippers suitable for high power systems. By precisely micro-machining the surface of the fiber we create CLS with efficiencies as high as 97 % for large NA, multi-mode, cladding light (NA = 0.3), and 70 % for single-mode, low NA, light. The NA of the cladding light is reduced from 0.3 down to 0.08. The CLS exhibit a 1°C/stripped-Watt temperature elevation making them very suitable for high power applications. This fabrication method is simple and reliable. We have tested different texturization geometries on several different fibers: 20/400 from Nufern, KAGOME, and LMA 10 and LMA 15 fibers (results not shown herein) and we observed good efficiencies and temperature elevation behavior for all of them. Finally, large scale production of CLS with this method is possible since the time necessary to prepare on CLS is very small, in the order of few seconds.
High power coatings for line beam laser optics of up to 2-meter in length
Mathias Mende, Jürgen Kohlhaas, Wolfgang Ebert
Laser material processing plays an important role in the fabrication of the crucial parts for state-of-the-art smartphones and tablets. With industrial line beam systems a line shaped beam with a length above one meter and an average power of several thousand watts can be realized. To ensure excellent long axis beam homogeneity, demanding specifications regarding the substrate surface form tolerances and the coating uniformity have to be achieved for each line beam optic. In addition, a high laser damage threshold and a low defect density are required for the coatings. In order to meet these requirements, the MAXIMA ion beam sputtering machine was developed and built by LASEROPTIK. This contribution describes the functional principle of MAXIMA deposition machine, which adapts the ion beam sputtering technology with its highest coating quality to the field of large area deposition. Furthermore, recent developments regarding the process control by optical broadband monitoring are discussed. Finally experimental results on different thin film characteristics as for example the coating uniformity, the microstructure and the laser damage resistance of multilayers are presented.
Poster Session
icon_mobile_dropdown
Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration
Saulius Frankinas, Andrejus Michailovas, Nerijus Rusteika, et al.
A novel chirped pulse amplification (CPA) configuration consisting of chirped fiber Bragg grating (CFBG) with tunable dispersion as a pulse stretcher and chirped volume Bragg grating (CVBG) as a pulse compressor is presented. We demonstrated that ultra short pulses was stretched up to 300 ps and compressed to sub-1ps without residual pedestal using described configuration quite efficiently.
Machine platform and software environment for rapid optics assembly process development
Sebastian Sauer, Tobias Müller, Sebastian Haag, et al.
The assembly of optical components for laser systems is proprietary knowledge and typically done by well-trained personnel in clean room environment as it has major impact on the overall laser performance. Rising numbers of laser systems drives laser production to industrial-level automation solutions allowing for high volumes by simultaneously ensuring stable quality, lots of variants and low cost. Therefore, an easy programmable, expandable and reconfigurable machine with intuitive and flexible software environment for process configuration is required. With Fraunhofer IPT’s expertise on optical assembly processes, the next step towards industrializing the production of optical systems is made.
Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser
A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.
Optical attachment for spatial transformation of excimer laser beam (Retraction Notice)
Aleksandr Zhevlakov, Alexsandr Grishkanich, Sergey Kascheev, et al.
Publisher’s Note: This paper, originally published on 22 April 2016, was retracted from the SPIE Digital Library on 14 December 2021 upon verification that it was a duplicate publication of the following paper:

A. Zhevlakov, E. Gavrilov, S. Kascheev, V. Kujanpaa, and T. Savinainen, “Optical attachment for transformation of output beam of excimer laser,” Proc. SPIE 7822, Laser Optics 2010, 78220C (22 March 2011); https://doi.org/10.1117/12.885210
Polarization and wavelength insensitive optical feedback control systems for stabilizing CO2 lasers
M. A. Jebali
Power scaling of multi-kilowatt fiber lasers has been driving the development of glass and fiber processing technology. Designed for processing of large diameter fibers, this technology is used for the fabrication of fiber-based components such as end-pump and side pump combiners, large diameter endcaps, ball lenses for collimators and focusers… The use of 10.6um CO2 lasers as a heating element provides incomparable flexibility, process control and repeatability when compared to conventional heating methods. This low maintenance technology provides an accurate, adjustable and uniform heating area by absorption of fused silica of the 10.6m laser radiation. However, commercially available CO2 lasers can experience power, polarization and mode instability, which becomes important at 20W levels and higher of output power. This paper presents a polarization and wavelength insensitive optical feedback control system for stabilizing commercially available CO2 lasers. Less than 1% power fluctuation was achieved at different laser power levels, ranging from as 5 to 40W.
High speed printing with polygon scan heads
To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.