Proceedings Volume 9657

Industrial Laser Applications Symposium (ILAS 2015)

Mike Green, Cath Rose
cover
Proceedings Volume 9657

Industrial Laser Applications Symposium (ILAS 2015)

Mike Green, Cath Rose
Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 1 July 2015
Contents: 8 Sessions, 23 Papers, 0 Presentations
Conference: Industrial Laser Applications Symposium 2015 2015
Volume Number: 9657

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9657
  • Additive Processes
  • Cutting and Drilling
  • Fume Extraction
  • LASHARE European Collaborative Project
  • Microprocessing
  • Surface Marking and Functionality
  • Welding
Front Matter: Volume 9657
icon_mobile_dropdown
Front Matter: Volume 9657
This PDF file contains the front matter associated with SPIE Proceedings Volume 9657, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Additive Processes
icon_mobile_dropdown
Nano-hardness and microstructure of selective laser melted AlSi10Mg scan tracks
Nesma T. Aboulkhair, Ian Maskery, Chris Tuck, et al.
Selective laser melting (SLM) of aluminium alloys faces more challenges than other ongoing alloys such as stainless steels and titanium alloys because of the material’s properties. It is important to study single scan tracks if high density large parts are to be made since they are the primary building blocks. In this study, the geometrical features of AlSi10Mg tracks indicated keyhole mode melting domination. Chemical composition mapping and nanoindentation showed enhanced nano-hardness in SLM material over conventional material with no spatial variation. This is due to a homogeneous elemental distribution and fine microstructure developed by fast solidification.
Laser cladding of nickel-based alloy coatings on copper substrates
Prabu Balu, Edward Rea, Justin Deng
The wear resistance of high-value copper components used in the metal casting, automotive, aerospace and electrical equipment industries can be improved by applying nickel (Ni)-based coatings through laser cladding. A high-power diode laser array providing continuous power levels up to 10 kilowatts with beam-shaping optics providing a rectangular focal region of various dimensions was used to deposit Ni-based alloy coatings with controlled thickness ranging from 0.3 mm to 1.6 mm in a single pass on copper (Cu) substrates. Slotted powder feeding plates with various discrete widths delivered uniform streams of powdered metal particles entrained in a carrier gas, matching the selected focal spot dimensions. To enhance laser beam coupling with the substrate and to avoid defects such as cracks, delamination and porosity, Cu substrates were preheated to a temperature of 300°C. The effect of heat input on microstructure of the cladding and extent of the heat-affected zone (HAZ) was evaluated using optical microscopy and scanning electron microscopy. Excessive heat input with longer interaction time increased dilution, porosity and expanded HAZ that significantly reduced the hardness of both the clad and the Cu substrates. Average microhardness of the Ni-C-B-Si-W alloy coating was 572 HV, which was almost 7 times greater than the hardness of the Cu substrate (84 HV).
Cutting and Drilling
icon_mobile_dropdown
Laser drilling of via micro-holes in single-crystal semiconductor substrates using a 1070nm fibre laser with millisecond pulse widths
Jessica O. Maclean, Jonathan R. Hodson, K. T. Voisey
Micro-machining of semiconductors is relevant to fabrication challenges within the semiconductor industry. For via holes for solar cells, laser drilling potentially avoids deep plasma etching which requires sophisticated equipment and corrosive, high purity gases. Other applications include backside loading of cold atoms into atom chips and ion traps for quantum physics research, for which holes through the semiconductor substrate are needed. Laser drilling, exploiting the melt ejection material removal mechanism, is used industrially for drilling hard to machine materials such as superalloys. Lasers of the kind used in this work typically form holes with diameters of 100’s of microns and depths of a few millimetres in metals. Laser drilling of semiconductors typically uses short pulses of UV or long wavelength IR to achieve holes as small as 50 microns. A combination of material processes occurs including laser absorption, heating, melting, vaporization with vapour and dust particle ejection and resolidification. An investigation using materials with different fundamental material parameters allows the suitability of any given laser for the processing of semiconductors to be determined. We report results on the characterization of via holes drilled using a 2000 W maximum power 1070 nm fibre laser with 1-20 ms pulses using single crystal silicon, gallium arsenide and sapphire. Holes were characterised in cross-section and plan view. Significantly, relatively long pulses were effective even for wide bandgap substrates which are nominally transparent at 1070 nm. Examination of drilled samples revealed holes had been successfully generated in all materials via melt ejection.
Advances in drilling with fiber lasers
High brightness quasi- continuous wave (QCW) and continuous wave (CW) fiber lasers are routinely being used for cutting and welding for a range of industrial applications. However, to date very little work has been carried out or has been reported on laser drilling with these laser sources. This work describes laser drilling ((trepan and percussion) of nickel based superalloys (thermal barrier coated and uncoated) with a high power QCW fiber laser. This presentation will highlight some of the most significant aspect of laser drilling, i.e. SmartPierceTM, deep hole drilling and small hole drilling. These advances in processing also demonstrate the potential for fiber laser processing when an advanced interface between laser and an open architecture controller are used.
Definition of fine cutting features for laser fusion cutting of stainless steel
J. Seebach, S. Norman, P. Harrison
Laser fusion cutting of stainless steel is often considered in a material range from 0,3mm up to 4mm and laser powers up to 2kW. For a given material thickness, different optimum beam and process parameters can be determined empirically, leading to a dross-free cut for high tool travel speeds. Realising sharp 90-degree corners, dross formation is observed and leads to a deteriorated cutting quality. With reorientation at small radii, the speed-dependent change in the cutting process is superimposed by the existing beam to nozzle misalignment and contributes to the stability of a cut. The feature radius R on the stability of the cutting process is being determined by reducing feature radius R. In this paper, cutting of different radii for different sized conventional nozzles is considered and analysed. Based on cutting quality evaluation, fine feature cutting is defined by discussing thickness-dependent finest cutting feature for a given gas dynamic input.
Fast and intuitive programming of adaptive laser cutting of lace enabled by machine vision
Iago Vaamonde, Álvaro Souto-López, Antón García-Díaz
A machine vision system has been developed, validated, and integrated in a commercial laser robot cell. It permits an offline graphical programming of laser cutting of lace. The user interface allows loading CAD designs and aligning them with images of lace pieces. Different thread widths are discriminated to generate proper cutting program templates. During online operation, the system aligns CAD models of pieces and lace images, pre-checks quality of lace cuts and adapts laser parameters to thread widths. For pieces detected with the required quality, the program template is adjusted by transforming the coordinates of every trajectory point. A low-cost lace feeding system was also developed for demonstration of full process automation.
Laser remote cutting of metallic materials: opportunities and limitations
Andreas Wetzig, Robert Baumann, Patrick Herwig, et al.
The fundamentals of laser remote cutting will be introduced as well as a comparison to the conventional laser fusion cutting process. The opportunities and limitations of this alternative laser cutting technology will be discussed in detail by means of recent application examples. Here to name cutting of typical punching and bending parts, battery foils, metals foams and electrical steel sheets. Questions that are concerning the cutting thickness, the cutting quality, the cycle time, and the impact on the material will be answered. Finally, conclusions and an outlook on future developments will be presented.
Fume Extraction
icon_mobile_dropdown
Legal requirements and guidelines for the control of harmful laser generated particles, vapours and gases
This paper is a review of the Health and Safety laws and guidelines relating to laser generated emissions into the workplace and outside environment with emphasis on the differences between legal requirements and guideline advice. The types and nature of contaminants released by various laser processes (i.e. cutting, coding, engraving, marking etc) are discussed, together with the best methods for controlling them to within legal exposure limits. A brief description of the main extract air filtration techniques, including the principles of particulate removal and the action of activated carbon for gas/vapour/odour filtration, is given.
LASHARE European Collaborative Project
icon_mobile_dropdown
Laser processing system for stitching structured patterns on large 3D parts
Rafael Cano Zuriguel, Sergio Saludes Rodil
The paper addresses the development of laser based equipment to structure large surfaces (1×1×0.5m - 3×3×1.5ft) that are shaped in three dimensions. A mechanic-optical system to process curved surfaces with an acceptance angle of up to 267° is presented. The challenge is to control the combined motion of the beam delivery system with respect to distortion of the motifs and positioning tolerances. The project starting Technology Readiness Level (TRL) was 5. Currently the project is under development and at the end of September 2015 the project will reach TRL 7 after industrial-like environment testing. The proposed system will enable manufacturers to offer individualized marking for large products.
Cognitive high speed defect detection and classification in MWIR images of laser welding
Yago L. Lapido, Jorge Rodriguez-Araújo, Antón García-Díaz, et al.
We present a novel approach for real-time defect detection and classification in laser welding processes based on the use of uncooled PbSe image sensors working in the MWIR range. The spatial evolution of the melt pool was recorded and analyzed during several welding procedures. A machine learning approach was developed to classify welding defects. Principal components analysis (PCA) is used for dimensionality reduction of the melt pool data. This enhances classification results and enables on-line classification rates close to 1 kHz with non-optimized code prototyped in Python. These results point to the feasibility of real-time defect detection.
Laser cutting metallic plates using a 2kW direct diode laser source
This paper investigates the feasibility of using a 2kW direct diode laser source for producing high-quality cuts in a variety of materials. Cutting trials were performed in a two-stage experimental procedure. The first phase of trials was based on a one-factor-at-a-time change of process parameters aimed at exploring the process window and finding a semi-optimum set of parameters for each material/thickness combination. In the second phase, a full factorial experimental matrix was performed for each material and thickness, as a result of which, the optimum cutting parameters were identified. Characteristic values of the optimum cuts were then measured as per BS EN ISO 9013:2002.
Microprocessing
icon_mobile_dropdown
Pulsed UV and ultrafast laser micromachining of surface structures
Paul Apte, Neil Sykes
We describe and compare the cutting and patterning of various “difficult” materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.
The effect of laser pulse duration and beam shape on the selective removal of novel thin film layers for flexible electronic devices
C. Moorhouse, D. M. Karnakis, C. Kapnopoulos, et al.
Lightweight, flexible substrates coated with thin film layers <0.5μm thick are commonly utilized for modern electronic devices that are portable and constantly reducing in size, weight, power consumption and material cost. Patterning techniques for these thin films are required to provide device functionality and alternatives to photolithography such as direct write laser processes are particularly attractive. However, for complex devices with multiple thin layers, the quality requirements for laser scribing are extremely high, since each individual thin film layer must be patterned without damaging the underlying thin film layer(s) and also provide a suitable topography for subsequent layers to be deposited upon. Hence, the choice of the laser parameters is critical for a number of emerging thin film materials used in flexible electronic devices such as ITO, pedot:PSS, silver nanoparticle inks, amongst others. These thin films can be extremely sensitive to the thermal interaction with lasers and this report outlines the influence of laser pulse duration and beam shaping techniques on laser patterning of these thin films and the implications for laser system design.
SMI: a new method to allow low cost, high resolution micro-machining using UV solid state lasers
David Milne, David Myles, Phil Rumsby
A new solid state laser based mask projection technique for micro-structuring materials is introduced and results obtained with a pilot system are shown. Details of the proposed architecture of production tools using the new technology are given. Advantages of the new method over conventional excimer laser based mask projection systems are summarized.
Surface Marking and Functionality
icon_mobile_dropdown
Laser surface texturing of cast iron steel: dramatic edge burr reduction and high speed process optimisation for industrial production using DPSS picosecond lasers
David Bruneel, Andrew Kearsley, Dimitris Karnakis
In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.
Laser induced micro plasma processing of polymer substrates for biomedical implant applications
P. W. French, A. Rosowski, M. Murphy, et al.
This paper reports the experimental results of a new hybrid laser processing technique; Laser Induced Micro Plasma Processing (LIMP2). A transparent substrate is placed on top of a medium that will interact with the laser beam and create a plasma. The plasma and laser beam act in unison to ablate material and create micro-structuring on the “backside” of the substrate. We report the results of a series of experiments on a new laser processing technique that will use the same laser-plasma interaction to micromachining structures into glass and polymer substrates on the “topside” of the substrate and hence machine non-transparent material. This new laser processing technique is called Laser Induced Micro Plasma Processing (LIMP2). Micromachining of biomedical implants is proving an important enabling technology in controlling cell growth on a macro-scale. This paper discusses LIMP2 structuring of transparent substrate such as glasses and polymers for this application. Direct machining of these materials by lasers in the near infrared is at present impossible. Laser Induced Micro Plasma Processing (LIMP2) is a technique that allows laser operating at 1064 nm to machine microstructures directly these transparent substrates.
Black anneal marking with pulsed fiber lasers
T. Murphy, P. Harrison, S. Norman
High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.
Nanosecond laser texturing of aluminium for control of wettability
Martin C. Sharp, Adam P. Rosowski, Paul W. French
There is increasing interest in the use of lasers to modify the wettability of surfaces. Here we report on the use of a 20W nS pulsed IR fibre laser to create strong hydrophobicity on the surface of aluminium sheets. This is unexpected, hydrophobicity is usually associated solely with femto- or pico- second laser processing. At a 20W average power level the area coverage rate is too small for many industrial applications. Further trials using a 800W DPSS laser are described and the ability of this system to change surface wettability at a much higher production rate are indicated. There is little reported literature on surface texturing at higher average power levels. Indications of the productivity, or surface coverage rate, are given.
Development in laser peening of advanced ceramics
Pratik Shukla, Graham C. Smith, David G. Waugh, et al.
Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.
Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response
D. G. Waugh, J. Lawrence, P. Shukla, et al.
Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.
Welding
icon_mobile_dropdown
Laser welding of copper and aluminium battery interconnections
The adoption of lithium-ion and/or super-capacitor battery technologies is a current hot topic in the automotive industry. For both battery types, the terminals and busbars are manufactured from copper (Cu) and/or aluminium-based (Al-based) alloys, as a result of their high electrical and thermal conductivities. Laser welding is considered an attractive process to industry due to its easy automotability, high processing speed and highly repeatable cost-effective processing. However, laser welding of Cu-Cu and Al-Al joints presents several difficulties due to the high surface reflectivity at infrared (IR) wavelengths. This behaviour becomes even more critical when processing thin sheets and foils.This paper summarises recent work performed to develop laser welding techniques suitable for monometallic joining of Cu-Cu and Al-Al electrical interconnections. Laser welding of multiple overlapped foils (with thickness in the range of 17μm-100μm) were investigated.
Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel
This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.