Proceedings Volume 9508

Holography: Advances and Modern Trends IV

cover
Proceedings Volume 9508

Holography: Advances and Modern Trends IV

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 21 May 2015
Contents: 8 Sessions, 37 Papers, 0 Presentations
Conference: SPIE Optics + Optoelectronics 2015
Volume Number: 9508

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9508
  • Digital Holography
  • Holographic Security
  • Holographic Materials and Data Storage
  • Holographic Materials and Modelling
  • Holographic Imaging, Fabrication, and Materials I
  • Holographic Imaging, Fabrication, and Materials II
  • Poster Session
Front Matter: Volume 9508
icon_mobile_dropdown
Front Matter: Volume 9508
This PDF file contains the front matter associated with SPIE Proceedings Volume 9508, including the Title Page, Copyright information, Table of Contents, Authors, Introduction (if any), and Conference Committee listing.
Digital Holography
icon_mobile_dropdown
Sparse approximations of phase and amplitude for wave field reconstruction from noisy data
Vladimir Katkovnik, Igor A. Shevkunov, Nikolay V. Petrov, et al.
The topic of sparse representations (SR) of images has attracted tremendous interest from the research community in the last ten years. This interest stems from the fundamental role that the low dimensional models play in many signal and image processing areas, i.e., real world images can be well approximated by a linear combination of a small number of atoms (i.e., patches of images) taken from a large frame, often termed dictionary. The principal point is that these large dictionaries as well as the elements of these dictionaries taken for approximation are not known in advance and should be taken from given noisy observations. The sparse phase and amplitude reconstruction (SPAR) algorithm has been developed for monochromatic coherent wave field reconstruction, for phase-shifting interferometry and holography. In this paper the SPAR technique is extended to off-axis holography. Pragmatically, SPAR representations are result in design of efficient data-adaptive filters. We develop and study the algorithm where these filters are applied for denoising of phase and amplitude in object and sensor planes. This algorithm is iterative and developed as a maximum likelihood optimal solution provided that the noise in intensity measurements is Gaussian. The multiple simulation and real data experiments demonstrate the advance performance of the new technique.
Real-time characterization of the neuronal response to osmotic shock by digital holographic microscopy
Maria Gomariz, Isabel Garcia, Cristina Soto-Sánchez, et al.
Digital holographic microscopy has numerous applications in biology for visualizing living cells and 3D tissues. This technique allows for the direct visualization of biological structures avoiding invasive and phototoxic procedures such as fixation and dying processing. In this study we have characterized the morphometry changes of neurons subject to osmolarity changes. For this purpose, we have measured the variations of the amplitude and the oscillation frequency of the plasmatic membrane, as well as the volume changes of the cells before the osmotic shock. There was a relation between the neural culture ageing and its behavioral changes. "Long-term" cultures that had not previously been studied were used to analyze the behavioral changes in aged cells.
Fluorescence digital holographic adaptive optics microscopy
Fluorescence microscopy is widely used in various of practical applications now. High resolution optical sectional microscopic imaging utilized by confocal two- or multi-photon fluorescence microscopy has became an essential tool in biological researches. However, optical aberrations introduced by nonhomogeneity refractive index of tissues degraded the resolution and brightness of the images. Here we present the implementation of self-interference digital holographic adaptive optics in fluorescence microscopy. Wavefront sensing and correction is achieved by holographic recording and numerical processing approach, dispenses with Shack-Hartmann sensor and deformable mirror-based complicated system. The operation speed of the system is enhanced using off-axis Fourier triangular holography. Both the influence of the size and axial position of the guide star on the quality of the corrected images are investigated.
Holographic Security
icon_mobile_dropdown
Plasmonic spectral filters based on diffraction gratings
Method for the analysis of plasmonic gratings is developed. The mathematical research of the spectral-angular characteristics of plasmonic gratings is realized. The dependency of spectral-angular characteristics on geometric parameters of the plasmonic grating are disclosed. Samples of plasmonic gratings are obtained. The results of mathematical modeling and theoretical studies are confirmed by the experimental samples. Spectral-angular characteristics of the plasmonic gratings samples qualitatively repeat theoretically modeled characteristics.
Security hologram foil labels with a design facilitating authenticity testing: effects of mechanical bending of substrates with the glued on holograms
Ivo Aubrecht
Optimal design of security holograms or diffractive optically variable image devices (DOVIDs) that would be complex enough to deter counterfeiters from attempts of mimicking but contains features readily recognizable by laymen has been addressed by many experts. This paper tries to discuss effects of mechanical bending of a flexible substrate to visual appearance of a glued-on foil DOVID. Initially plane, the DOVID is deformed to a convex- or concave-shaped curved surface. Theoretical analyses and experimental results assume the surface to be a cylindrical segment and concern rainbow-type surface-relief holograms that are recorded piecewise in a photoresist material, coated on planar and non-planar substrates.
Holographic Materials and Data Storage
icon_mobile_dropdown
Volume holographic gratings: fabrication and characterization
G. Bianco, M. A. Ferrara, F. Borbone, et al.
Volume Holographic Gratings is designed and fabricated to obtain a simple, lightweight and cheap light deflector. The entire process, starting from the chemical preparation of the photosensitive material, to the recording of Volume Holographic Gratings and their appropriate characterization, is reported. The recording material was a new photopolymer sensitive to light at 532nm. Results showed that the recorded Volume Holographic Grating presents a very high value of the diffraction efficiency, up to 94%. In addition, a flexible material is used to write Volume Holographic Gratings.
Theoretical analysis of diffraction characteristics for peristrophic multiplexing with spherical reference wave
Many kinds of recording techniques have been proposed for holographic data storages (HDS). Multiplexing recording technique is a primary contributor to determining the recording density in HDS. The method that utilizes spherical reference waves is characterized by the ability to enable multiplexing recording only by displacing (shifting or rotating) the recording medium. In this study, we propose a theoretical diffraction model of peristrophic multiplexing with spherical reference wave for HDS.
Humidity and temperature response of photopolymer-based holographic gratings
Tatsiana Mikulchyk, James Walshe, Dervil Cody, et al.
Holographic sensors have significant potential in various applications ranging from in vitro diagnostics to optical security. They are capable of providing fast, real-time, reversible or irreversible, visual colorimetric or optical readouts. The main challenge in the development of holographic sensors is to improve their selectivity by functionalizing the holographic recording material and achieve a response to a specific analyte. This material should be permeable to the analyte and its properties should change under exposure to the analyte. This work explores the humidity and temperature response of volume phase gratings recorded in photopolymers containing acrylamide and diacetone acrylamide as monomers, and triethanolamine and N-phenylglycine as photoinitiators. Characterization of the humidity response of photopolymer-based gratings in the relative humidity (RH) range of 20-90 % was carried out by measuring the diffraction efficiency of slanted transmission gratings and the position of the maximum intensity in the spectral response of reflection gratings. A strong humidity dependence of the diffraction efficiency of diacetone acrylamide-based transmission gratings was observed at RH=20-90%. The humidity dependence of the spectral response of the reflection gratings showed that photopolymers containing triethanolamine are more hydrophilic than photopolymers containing N-phenylglycine. The temperature response of slanted transmission gratings was investigated in the temperature (T) range of 20–60 °C. Exposure of the photopolymer layers containing triethanolamine to elevated temperature showed that the observed Bragg angle shift was caused by layer shrinkage due to water evaporation. The application of a sealing technique allowed for the observation of the photopolymer layer swelling due to the layer’s thermal expansion. The results demonstrate an effective approach to obtaining photopolymer-based gratings with tuneable temperature and humidity sensitivity.
Read-out optical schemes for holographic memory system based on multiplexed computer generated 1D Fourier holograms
Sergey S. Donchenko, Sergey B. Odinokov, Vladimir I. Bobrinev, et al.
Computer holographic synthesis allows to significantly simplify the recording scheme of microholograms in holographic memory system as the classic high precision holographic setup based on two-beam interference is removed by simple scale reduction projection scheme. Application of computer generated 1D-Fourier holograms provides the possibility of selective reconstruction of the multiplexed holograms with different orientation of data lines by corresponding rotation of anamorphic objective (cylindrical lens), used in the read-out systems. Two configurations of read-out optical scheme were investigated by our team: full-page scheme and line-by-line scheme. In the present article we report the specificities of these schemes and consider their advantages and disadvantages. The results of experimental modeling of both read-out configurations are also presented.
Holographic Materials and Modelling
icon_mobile_dropdown
Three-dimensional numerical model of holographic grating formation in photopolymer materials
When the large thickness is used as the holographic storage materials, a non-ignorable problem is the light intensity attenuation in depth due to high absorptive of the dye. For this reason more completely modeling the evolutions inside the material is necessary to consider into the developed standard kinetic model. In this paper the photo-polymerization processes during the large thickness holographic grating formation are analyzed. A 3-dimensional algorithm is present by deriving the system partial differential rate equations governing each associated chemical species, and using the finite difference approximation, these equations can be solved numerically. This extended model describes the time varying behaviors of the non-uniform photo-physical and the photochemical evolutions in photopolymer materials. In this model both dye molecules consumption and light energy absorption are calculated time varyingly, and then the polymer and monomer concentrations distributions are obtained. Applying the Lorenz-Lorenz relationship, the non-uniform grating formatted in material depth, and its refractive index, which is distorted from ideal sinusoidal spatial distribution, can be more accurately predicted.
Photorefractive amplification of dynamic light signals using photoconductive ferroelectric liquid crystals
The photorefractive effect in photoconductive ferroelectric liquid crystal blends containing photoconductive chiral compounds was investigated. Terthiophene compounds possessing chiral structures were mixed with an achiral smectic C liquid crystal mixture. The blends exhibit the ferroelectric chiral smectic C phase. The photorefractivity of the liquid crystal blends was investigated by two-beam coupling experiments. The photoconductive ferroelectric liquid crystal blends prepared in this study exhibited a large gain coefficient of over 1200 cm-1 and a fast response time shorter than 1 ms. Amplification of an moving optical image signal of over 30 fps using the photorefractive ferroelectric liquid crystal was demonstrated.
Formation of dissipative structures at hologram recording in CaF2 crystals with color centers
Aleksandr S. Shcheulin, Aleksandr E. Angervaks, Andrey V. Veniaminov, et al.
The structurization of holographic planes in holograms recorded in CaF2 crystal with color centers was found. The structurization is apparent in the formation of spiral bundles, which pierce the holographic planes. It testifies to self-organization of color centers in these planes. This process is believed to be linked with colloidal centers, 2D metal islets in the crystal lattice, whose formation and decay during hologram recording at temperatures of 150–190 °C may be considered as a dynamic phase transition that facilitates the generation of stable spatially inhomogeneous (dissipative) structures in the form of bundles. The bundles arise during hologram recording process and remain frozen on cooling of the crystal after the process is finished.
Advances in photo-thermo-refractive glass composition modifications
S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov
The novel photo-thermo-refractive (PTR) glass developed in ITMO University is a very promising optical material for photonic and plasmonic applications. In this paper authors represent study of tin influence on photo thermo inducted crystallization process and make a comparison of the optical and holographic properties of the new and classic composition of glass. Also during this work was made overall optimization of chemical composition namely was optimized concentration of halides, fluorides, bromides which are responsible for crystalline phase properties. Ions of antimony, which playing key role in catching and transferring electrons emitted during the UV exposure and subsequent heating. Also was lowered the concentration of stray impurity ions which a capable to catch photo-electrons. Optical spectra show that new composition of PTR glass has no absorption band in visible range caused by metal nano particles of silver. That allows recording of pure phase holograms in wide spectral range. Furthermore new PTR glass allows receiving refractive index modulation up to 1500 ppm. And the UV exposures needed to achieve maximum changes in refraction index are 6-7 times lower than in classic glass.
Holographic Imaging, Fabrication, and Materials I
icon_mobile_dropdown
Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material
We demonstrate theoretically and experimentally that the light can be self-focused and self-trapped in a self-written optical waveguide in a bulk acrylamide/polyvinyl alcohol (AA/PVA) solid photopolymer material volume. The manufacture method, i.e., how to prepare the AA/PVA photopolymer material is detailed. In our experimental observation the refractive index changes induced are permanent. The resulting optical waveguide channel has good physical stability and can be integrated with optoelectronic devices as part of integrated optical systems. The theoretical model developed predicts the formation/evolution of the observed self-written waveguides inside the bulk material. The model involves appropriately discretizing and then numerically solving the paraxial wave equation in Fourier space and the material equation in time space.
Second harmonics HOE recording in Bayfol HX
Friedrich-Karl Bruder, Thomas Fäcke, Rainer Hagen, et al.
Volume Holographic Optical Elements (vHOEs) provide superior optical properties over DOEs (surface gratings) due to high diffraction efficiencies in the -1st order and their excellent Bragg selectivity. Bayer MaterialScience is offering a variety of customized instant-developing photopolymer films to meet requirements for a specific optics design of a phase hologram. For instance, the photopolymer film thickness is an ideal means to adjust the angular and the spectral selectivity while the index modulation can be adopted with the film thickness to achieve a specific required dynamic range. This is especially helpful for transmission type holograms and in multiplex recordings. The selection of different substrates is helpful to achieve the overall optical properties for a targeted application that we support in B2B-focused developments. To provide further guidance on how to record volume holograms in Bayfol HX, we describe in this paper a new route towards the recording of substrate guided vHOEs by using optimized photopolymer films. Furthermore, we discuss special writing conditions that are suitable to create higher 2nd harmonic intensities and their useful applications. Due to total internal reflection (TIR) at the photopolymer-air interface in substrate guided vHOEs, hologram recording with those large diffraction angles cannot usually be done with two free-space beams. Edge-lit recording setups are used to circumvent this limitation. However, such setups require bulky recording blocks or liquid bathes and are complex and hard to align. A different approach that we present in this paper is to exploit 2nd harmonic grating generation in a freespace recording scheme. Those 2nd harmonic components allow the replay of diffraction angles that are normally only accessible with edge-lit writing configurations. Therefore, this approach significantly simplifies master recordings for vHOEs with edge-lit functionalities, which later can be used in contact copy schemes for mass replication. In this paper, we will discuss and illustrate recording parameters to influence 2nd harmonic efficiency in optimized photopolymer films and will explain preferred geometries for recording.
Lab-level and low-cost fabrication technique for polymer based micro-optical elements and holographic structures
Maik Rahlves, Maher Rezem, Christian Kelb, et al.
Polymer based diffractive optical elements have gained increasing interest due to their potential to be used in various applications such as illumination technology, micro optics and holography. We present a novel production process to fabricate polymer based diffractive optical elements and holograms. The process is based on maskless lithography, which is used to fabricate optical elements in photoresist. We discuss several lab-made lithography setups based on digital mirror devices and liquid crystal devices with respect to light efficiency, resolution and contrast. The whole optical setup is designed with an emphasis on low-cost setups, which can be easily implemented in an optical research lab. In a subsequent step, a copy of the microstructures is easily replicated into optical polymeric materials by means of a soft stamp hot embossing process step. The soft stamp is made from Polydimethylsiloxan, which is coated onto the microstructure in resist. The hot embossing process is carried out by a self-made and low-cost hot embossing machine. We present confocal topography measurements to quantify the replication accuracy of the process and demonstrate diffractive optical elements and holographic structures, which were fabricated using the process presented.
Comparison of a new photosensitizer with Erythrosin B for use in a photopolymer
Yue Qi, Haoyu Li, Jean Pierre Fouassier, et al.
Dyes often act as the photoinitiator PI/photosensitizer PS in photopolymer materials and are therefore of significant interest. The properties of the PI/PS used strongly influences grating formation when the material layer is exposed holographically. In this paper, the ability of a recently synthesized dye, D_1, to sensitise an acrylamide/polyvinyl alcohol (AA/PVA) based photopolymer is examined and the material performance is characterised using an extended Non-local Photopolymerization Driven Diffusion (NPDD) model. Electron Spin Resonance Spin Trapping experiments (ESR-ST) are also carried out to characterize the generation of the initiator/primary radical, R•, during exposure. The results obtained are then compared to those for the corresponding situation when using a Xanthene dye, i.e., Erythrosin B (EB), under the same experiment conditions. The results indicate that the non-local effect is greater when this new photosensitizer is used in the material. Analysis indicates that this is the case because of the dyes (D_1) weak absorptivity and the resulting slow rate of primary radical production.
Diffractive optical elements with an increased angular and wavelength range of operation for application in solar collectors
A holographic device characterised by a large angular and wavelength range of operation is under development. It aims to improve the efficiency of solar energy concentration in solar cells. The aim of this study is to increase the angular and wavelength range of the gratings by stacking three layers of high efficiency gratings on top of each other so that light from a moving source, such as the sun, is collected from a broad range of angles. In order to increase the angle and the wavelength range of operation of the holographic device, low spatial frequency of holographic recording is preferable. Recording at low spatial frequency requires a photopolymer material with unique properties, such as fast monomer/monomers diffusion rate/rates. An acrylamide-based photopolymer developed at the Centre for Industrial and Engineering Optics has been used in this study. This material has fast diffusion rates and has previously demonstrated very good performance at low spatial frequency, where gratings of 90% diffraction efficiency at 300 lines/ mm spatial frequency were recorded in layers of 75 μm thickness. This paper will study the angular selectivity of a device consisting of stacked layer of Difftactive Optical Elements ( DOEs) recorded at range of angles at spatial frequency of 300 lines/mm with recording intensity of 1 mW/cm2. The optical recording process and the properties of the multilayer structure are described and discussed.
Holographic Imaging, Fabrication, and Materials II
icon_mobile_dropdown
Holographic wavefront sensors: state of the art and prospects
Maksim A. Solovev, Vladimir Yu. Venediktov
Many areas of optical science and technology require fast and accurate measurement of the radiation wavefront shape. Today there are known a lot of wavefront sensor (WFS) techniques, and their number is growing up. The last years have brought a growing interest in several schematics of WFS, employing the holography principles and holographic optical elements (HOE). Some of these devices are just the improved versions of the standard and most popular Shack-Hartman WFS, while other are based on the intrinsic features of HOE. These are, for instance the modal holographic WFS configurations and some others. The paper presents the review of such techniques.
Incoherent holography with the use of Shack-Hartmann wavefront sensor
A. V. Gorelaya, V. P. Lukin, A. A. Sevryugin, et al.
The paper considers the use of Shack-Hartmann sensor for hologram recording. Despite all the advantages coherent digital holography is limited while fixing ultrafast or short-lived processes, as well as self-luminous objects. The solution to this problem is the use of incoherent digital holography (DIH). It allows to make such observations which is especially important in microscopy. Previously for registration of incoherent digital holograms only schemes based on a Michelson interferometer were used. In this experiment we decided to use Shack–Hartmann sensor to obtain simple pseudo hologram and reconstruct it using electronically-addressed spatial light modulator.
Challenges in holographic measurement of aspheric and freeform optical components shape
Vít Lédl, Pavel Psota, Petr Vojtíšek, et al.
The use of Aspherical and free form components is not any more the domain of very special applications and systems. Ever growing demand for better performing systems is pushing hard on its use in an ordinary applications. However the measurement of such components is still challenging because of three main reasons, it is slow, the accuracy is generally not satisfying, the measurable shapes are still rather limited. We developed holographic method for measurement of diffusive aspheric and freeform surfaces. Our recent efforts are focused on method modification which would enable to apply it in measurement of complex polished surfaces. This efforts show up to be rather difficult one. We proposed many improvements of the previously introduced method. We built up several setups, where we tested our assumptions. The first results are positive and some of them are published here. However many problems are still awaiting unaddressed and have to be solved before the method could be used with success. In this paper we are also discussing the shortcomings of the proposed method.
Advanced time average holographic method for measurement in extensive vibration amplitude range with quantitative single-pixel analysis
Pavel Psota, Vít Lédl, Petr Vojtíšek, et al.
In this paper we propose a time average digital holographical arrangement employing frequency shift of reference wave and its phase modulation. It results in Phase Modulated Frequency Shifted Time Average Digital Holography PMFSTADH method. This method has a potential to extend currently using frequency shifted time average digital holography to possibility of numerical analysis. It is primarily useful for measurement of great or very small amplitudes of vibration. Moreover we use acusto-optical modulators to realize frequency as well as phase modulation so we need no additional hardware in our experimental setup.
All-optically controlled light valve assembled by photorefractive crystal and PDLC hybrid structure
Vera Marinova, Ren Chung Liu, Ming Syuan Chen, et al.
A light-valve device, assembled by Ru–doped Bi12SiO20 (BSO) photoconductive substrate and polymer dispersed liquid crystal layer is proposed, in which all the processes are controlled by the near infrared light. Laser beam illumination (Gaussian shape) on BSO:Ru crystal caused charge carriers generation, which migrate and form an inhomogeneous distribution and subsequent space charge field. This surface-localized electromagnetic field penetrates into the PDLC layer and modulate the orientation of the liquid crystals, that caused reverse of the device initial opaque state to the highly transparent one. The proposed structure is simple and easy to fabricate, without requirements of ITO contacts and alignment layers and opens further possibilities for near-infrared applications.
Poster Session
icon_mobile_dropdown
Comparison of digital holographic interferometry and constant temperature anemometry for measurement of temperature field in fluid
Roman Doleček, Pavel Psota, Vít Lédl, et al.
The presented paper shows possibility of using digital holographic interferometry (DHI) for temperature field measurement in moving fluids. This method uses a modified Twymann-Green setup having double sensitivity instead of commonly used Mach-Zehnder type of interferometer in order to obtain sufficient phases change of the field. On the other hand this setup is not light efficient as Mach-Zehnder interferometer. For measurement of the fast periodical phenomenon is not necessary to use always the high speed camera. One can consider this field to coherent phenomenon. With employing one digital camera synchronized to periodic field and external triggered one can capture whole period of the phenomenon. However the projections form one viewing direction of asymmetrical temperature field maybe misguided. Hence for sufficient examination of the asymmetrical field one should capture a large number of the phenomenon’s projections from different viewing directions. This projections are later used for 3D tomographic reconstruction of the whole temperature field and its time evolution. One of the commonly used method for temperature field measurement in moving fluids is hot wire method - constant temperature anemometry (CTA). In contrast to whole field measurement of DHI it is an invasive point temperature measurement method. One of the limiting factor of using CTA in moving fluids is frequency of temperature changes. This changes should not exceed 1 kHz. This limitation could be overcome by using of optical methods such as DHI. The results of temperature field measurement achieved by both method are compared in the paper.
Image fusion using bi-directional similarity
Chunshan Bai, Xiaoyan Luo
Infrared images are widely used in the practical applications to capture abundant information. However, it is still challenging to enhance the infrared image by the visual image. In this paper, we propose an effective method using bidirectional similarity. In the proposed method, we aim to find an optimal solution from many feasible solutions without introducing intermediate image. We employ some priori constraints to meet the requirements of image fusion which can be detailed to preserve both good characteristics in the infrared image and spatial information in the visual image. In the iterative step, we use the matrix with the square of the difference between images to integrate the image holding most information. We call this matrix the bidirectional similarity distance. By the bidirectional similarity distance, we can get the transitive images. Then, we fuse the images according to the weight. Experimental results show that, compared to the traditional image fusion algorithm, fusion images from bidirectional similarity fusion algorithm have greatly improved in the subjective vision, entropy, structural similarity index measurement. We believe that the proposed scheme can have a wide applications.
Design and experiments of combined diffractive optical element for virtual displays and indicators
Sergey B. Odinokov, Maria A. Ruchkina, Gaik R. Sagatelyan, et al.
Combined diffractive optical elements, which perform the functions of deflection, focusing or transformation of wave fronts and together with the spectral-angular selection of the incident polychromatic radiation, obtained on a single substrate, the method of their design and fabrication are described. The combination of four-level diffraction grating with plasmon meander diffraction grating as a spectral filter that have a bandwidth that varies with the angle of incidence are investigated for use in virtual displays and indicators.
Modeling of effect of LC SLM phase fluctuations on kinoforms optical reconstruction quality
Pavel A. Cheremkhin, Nikolay N. Evtikhiev, Vitaly V. Krasnov, et al.
Phase-only liquid crystal (LC) spatial light modulators (SLM) are actively used in various applications. However, majority of scientific applications require stable phase modulation which might be hard to achieve with commercially available SLM due to its consumer origin. The use of digital voltage addressing scheme leads to phase temporal fluctuations, which results in lower diffraction efficiency and reconstruction quality of displayed diffractive optical elements (DOE). It is often preferable to know effect of these fluctuations on DOE reconstruction quality before SLM is implemented into experimental setup. It is especially important in case of multi-level phaseonly DOE such as kinoforms. Therefore we report results of modeling of effect of phase fluctuations of LC SLM “HoloEye PLUTO VIS” on kinoforms optical reconstruction quality. Modeling was conducted in the following way. First dependency of LC SLM phase shift on addressed signal level and time from frame start was measured for all signal values (0-255) with temporal resolution of 0.5 ms in time period of one frame. Then numerical simulation of effect of SLM phase fluctuations on kinoforms reconstruction quality was performed. Based on measured dependency, for each time delay new distorted kinoform was generated and then numerically reconstructed. Averaged reconstructed image corresponds to optically reconstructed one with registration time exceeding time period of one frame (16.7 ms), while individual images correspond to momentary optical reconstruction with registration time less than 1 ms. Quality degradation of modeled optical reconstruction of several test kinoforms was analyzed. Comparison of kinoforms optical reconstruction with SLM and numerically simulated reconstruction was conducted.
Retractions of the gingival margins evaluated by holographic methods
Cosmin Sinescu, Meda Lavinia Negrutiu, Marius Manole, et al.
The periodontal disease is one of the most common pathological states of the teeth and gums system. The issue is that its evaluation is a subjective one, i.e. it is based on the skills of the dental medical doctor. As for any clinical condition, a quantitative evaluation and monitoring in time of the retraction of the gingival margins is desired. This phenomenon was evaluated in this study with a holographic method by using a He-Ne laser with a power of 13 mW. The holographic system we have utilized – adapted for dentistry applications - is described. Several patients were considered in a comparative study of their state of health – regarding their oral cavity. The impressions of the maxillary dental arch were taken from a patient during his/her first visit and after a period of six months. The hologram of the first model was superposed on the model cast after the second visit. The retractions of the gingival margins could be thus evaluated three-dimensionally in every point of interest. An evaluation of the retraction has thus been made. Conclusions can thus be drawn for the clinical evaluation of the health of the teeth and gums system of each patient.
Photorefractive phase-conjugation digital holographic microscopy
Chi-Ching Chang, Huang-Tian Chan, Min-Tzung Shiu, et al.
In this work, we propose an innovative method for digital holographic microscopy named as photorefractive phaseconjugation digital holographic microscopy (PPCDHM) technique based on the phase conjugation dynamic holographic process in photorefractive BaTiO3 crystal and the retrieval of phase and amplitude of the object wave were performed by a reflection-type digital holographic method. Both amplitude and phase reconstruction benefit from the prior amplification by self-pumped conjugation (SPPC) as they have an increased SNR. The interest of the PPCDHM is great, because its hologram is created by interfered the amplified phase-conjugate wave field generated from a photorefractive phase conjugator (PPC) correcting the phase aberration of the imaging system and the reference wave onto the digital CCD camera. Therefore, a precise three-dimensional description of the object with high SNR can be obtained digitally with only one hologram acquisition. The method requires the acquisition of a single hologram from which the phase distribution can be obtained simultaneously with distribution of intensity at the surface of the object.
Estimation of objects transverse parameters in off-axis and in-line Fresnel digital holography
Pavel A. Cheremkhin, Nikolay N. Evtikhiev, Vitaly V. Krasnov, et al.
In this report transverse parameters of objects registered with inline and off-axis Fresnel digital holography schemes were estimated: maximum transverse dimensions of objects, size and quantity of object resolution elements. By determining allowed locations of diffraction orders under reconstruction, new expressions for estimation of objects transverse parameters were obtained. In case of off-axis holography it is desirable that object should not overlap with zero-order and twin images. If object and twin images are located on opposite sides relative to zero-order under reconstruction, this is case of preventing of cyclic shift of twin image (PCS). If twin image is located on both sides relative to zero-order under reconstruction but don’t overlap with object image, this is case of assumption of cyclic shift of twin image (ACS). ACS case allows to register digital holograms of larger objects compared to PCS case. However, for example, for automatic image processing, separate display of object and twin images relative to zero-order is often required. It was found that ACS case allows to register holograms with distance between the object and hologram 1.5 times lesser than in PCS case. And maximum transverse dimension of object in ACS case is always greater than in PCS case by the half of hologram size. For verification of obtained estimates, off-axis digital Fresnel holograms with 2048x2048 pixels were optically registered. Contour images located behind static scatter were used as objects. Confirmations on transverse object parameters estimates, satisfying ACS and PCS cases, were derived. These results demonstrate correctness of obtained quantitative estimates.
Study of transparent particles in the volume of optical medium using digital holography and singular-optics approach
The study of particles that are transparent to the probing radiation but introduce a phase delay appears to be relevant especially in the fields of biology and medicine. In this paper, we propose an approach to the study of the distribution of transparent particles suspended in a volume of optical medium, which combines the method of digital holography and the concept of singular optics. For the numerical study of the particles, we use a method, based on the obtainment and analysis of zerograms that correspond to the spatial distributions of amplitude zeros of the complex amplitude of the field. We explore the features of the application of analysis of the amplitude zero distributions in solving the problem of studying transparent particles suspended in a volume of the optical medium. We investigate the effect of various particle parameters on the recorded hologram and the structure and distribution of the amplitude zeros of the electromagnetic field. We demonstrate the use of histograms of distributions of local densities of amplitude zeros for the characterization of a higher number of transparent particles in volume. Numerical experiments on the use of analysis of the amplitude zeros of the field have shown that there are a number of particular qualities in the distribution of the zeros of amplitude, which can be subsequently used to develop more accurate and efficient method of characterization of transparent particles.
Application of fractal masks with spiral phase distribution for the determination phase discontinuities in transparent objects
Alexander A. Zinchik, Yana B. Muzychenko
In this paper we propose the new method of nondestructive checking, based on application of the complex fractal masks with fractal amplitude part and spiral phase distribution photographed through the objects under study. Coherent optical image processing of the fractal masks allow to receive the separate information about components of the refractive index gradient and phase discontinuities. The power of high spatial frequencies of the fractal mask spectrum is ten times greater in comparison with spectrum of regular mask. The analysis of results of the inverse Fourier transform of the distorted spectrum of regular and fractal masks shows that the fractal mask with spiral phase distribution is more sensitive and allows obtain more precisely the value of distortion of the initial object.
Spectral analysis in overmodulated holographic reflection gratings recorded with BB640 ultrafine grain emulsion
Pedro Mas-Abellán, Roque Madrigal, A. Fimia
Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation. We studied the influence of the grating thickness on the overmodulation and its effects on the transmission spectra for a wide exposure range by use of two different thickness ultrafine grain emulsion BB640, thin films (6 μm) and thick films (9 μm), exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index could offer some benefits such as high diffraction efficiency (reaching 90 %), increase of grating bandwidth (close to 80 nm), making lighter holograms, or diffraction spectra deformation, transforming the spectrum from sinusoidal to approximation of square shape. Based on these results, we demonstrate that holographic reflection gratings spectra recorded with overmodulation of refractive index is formed by the combination of several non-linear components due to very high overmodulation. This study is the first step to develop a new easy multiplexing technique based on the use of high index modulation reflection gratings.
Amplitude-phase type fractal screens and their application in phase-retrieval method
Yana B. Muzychenko, Alexandr A. Zinchik
In this paper the analysis and comparison of diffraction spectra of amplitude-phase type fractal screens are presented. Amplitude-phase type fractal screens based on well-known fractals, possess exact or statistical self-similarity, but have managed amplitude transmittance and phase shift. Modeling results show that diffraction spectrum of amplitude-phase type fractal screens possess prevailing power of high frequencies in comparison with spectra of fractal structures with binary transmittance and phase shift. Averaging scattering indicatrices for fractal screens with different parameters are presented. The problem of phase retrieval arises in various fields of science and engineering, including electron microscopy, biology, crystallography, astronomy, and optical imaging. At presence there is a great number of phase retrieval methods without reference wave based on iterative algorithms and additional intensity distribution registration. In this paper we propose the new phase retrieval method with using amplitude-phase type fractal screens.
Synthesis of Fourier holograms for recognition of radiation sources with continuous spectra by dispersive correlators
Dispersive correlators have been proposed previously for solving problems of recognition of radiating objects in real time. Correlation signals are formed by radiation of analyzed object during its interaction with spatial filter. Most difficult recognition case is when spectrum of input radiation is continuous (non-line spectrum). Method of synthesis of Fourier holograms for their using in dispersive correlators as spatial filters is developed in this work. Spectral ranges, in which values of components of radiation are greater than predetermined threshold for reference spectrum, were determined. Entrance slit used as reference object. Next, spatial image of spectrum, which is a set of images of object (slit), was formed. Amount of object images and its sizes are determined with selected wavelength ranges. Fourier hologram of this image was computer synthesized and had 2048x2048 pixels. Then this hologram was binarized and printed using laser imagesetter with 100 dots/mm resolution. In this work the scheme of the dispersive correlator with single Fourier-objective was used. Correlation signals for different spectra were experimentally formed. LEDs, including RGB-LED with ability of dynamically changing of composition of radiation spectrum, were used as radiation sources. Post-processing operations, which provide independence of recognition results from radiation source power and holograms diffraction efficiency, were defined. Three methods of normalization of correlation signal for identification signal obtaining were experimentally tested and compared. These methods are normalization to radiation power in zero, first, and both of these diffraction orders. Experimental results on identification of test sources with non-line radiation spectra are obtained. They show successful recognition of used LED sources of different colors. Average ratio of spectra coincidence signal to mismatch signal was 4.6 at relative spectral resolution of used setup equaled to 0.004.
Direct real-time measurement of shrinkage in photopolymer materials during recording of reflection gratings
Petr Vojtíšek, Milan Kvĕtoň
Photopolymer recording materials aimed at a recording of holograms, diffraction elements for manipulation of light or storing of information received great deal of attention in recent years. For their optimal application it is desirable to characterize them and to know what to expect from them. During the recording of the diffraction gratings (or elements) into this photopolymer materials (but not exclusively) there can be some volume changes of the material itself (so-called shrinkage) which consequently alter the replay performance of such gratings, for example from a perspective of a color fidelity, reconstruction conditions, or diffraction efficiency (in case of a general hologram, the deformation of a holographic image is observed). The main aim is to characterize volume changes and to minimize them with application of some precompensation method in advance and so the resulting grating will have desired properties. In this contribution, we would like to present and discuss measurement method for direct and real-time detection of such volume changes for reflection gratings in low shrinkable photopolymer materials. This measurement method is based on a reconstruction of the grating with low intensity white light under slightly different angle than the angle of the recording is and the analysis on the idea of fringe plane rotation model. For a theoretical background the Kogelnik’s Coupled Wave theory and Rigorous Coupled Wave Analysis are used. The recording of the diffraction gratings and measurement of their volume changes is experimentally done for a photopolymer material Bayfol HX101.