Proceedings Volume 8925

Fifth International Conference on Lasers in Medicine: Biotechnologies Integrated in Daily Medicine

cover
Proceedings Volume 8925

Fifth International Conference on Lasers in Medicine: Biotechnologies Integrated in Daily Medicine

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 16 January 2014
Contents: 3 Sessions, 34 Papers, 0 Presentations
Conference: Fifth International Conference on Lasers in Medicine 2013
Volume Number: 8925

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 8925
  • Lasers in Dentistry
  • Systems, Devices and Applications of Optical Coherence Tomography for Biomedical Imaging
Front Matter: Volume 8925
icon_mobile_dropdown
Front Matter: Volume 8925
This PDF file contains the front matter associated with SPIE Proceedings Volume 8925, including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.
Lasers in Dentistry
icon_mobile_dropdown
New method of laser doppler flowmetry signal processing in pulp vitality evaluation after teeth cosmetic treatment
Carmen Todea, Amalia Sarpe, Bogdan Vitez, et al.
The present study aims to assess the pulp vitality before and after different tooth bleaching procedures, in order to determine the changes in pulpal microcirculation and whether they are reversible or not. Twelve volunteers were included in this study. For each volunteer, the pulpal blood flow of maxillary teeth was assessed prior to treatment using Laser Doppler Flowmetry. The “in office” bleaching technique was used 6 anterior teeth, with two different gels, a conventional one chemically activated (Group I 3teeth) and another one activated using Nd:YAG laser (Group II-3 teeth). The bleaching agents were applied on counterpart teeth and, after obtaining a esthetic results for each tooth, the pulpal blood flow was assessed using Laser Doppler Flowmetry immediately after treatment and then after one day and one week. All data were collected and statistically analyzed. Immediately after treatment, the assessment showed an increase of pulpal blood flow, for both study groups, but higher in Group I as compared to Group II (p<0.005). The subsequent assessments showed a reduction of the pulpal blood flow with non – significant differences between the study groups (p<0.005).The results suggest that the tooth bleaching procedurere presents a safe treatment method, which does not lead to irreversible damage to the dental pulp, when used correctly.
Laser treatment of oral vascular malformations
U. Romeo, G. Gaimari, M. Mohsen, et al.
Oral Vascular Malformations (OVM) are congenital anomalies characterized by morph-structural and/or functional changes of nature in severity and extension. OVM can affect any type of vessels arterial, venous or lymphatic and any capillary or anatomical. They are divided into two categories: low and high flow. In this study were treated 40 patients with OVM with a range size from 2 mm to 44 mm; they were subjected to clinical examination supported by Colour-Doppler Ultrasound instrumental examination and only for doubt cases the Magnetic Resonance Imaging (MRI) was prescribed. Only low flow venous and capillary malformations were treated by GaAlAs laser (Wiser®, Lambda, Brindole,Italy, 980nm) and KTP laser (SmartLite®, DEKA, Florence, Italy, 532nm) with two different techniques: the Transmucosal Thermophotocoagulation (TMT) and the Intralesional Photocoagulation (ILP). These techniques permitted a good control of haemostasis, avoiding bleeding both during surgery and in the postoperative. It is obtained an excellent and good healing respectively in 10% and 60% of cases, a moderate and poor resolution respectively in 22.5% and 7.5% of cases. A clear diagnosis allowed the management of Venous malformations (VM) by laser devices with wavelengths highly absorbed in haemoglobin in safety and efficacy and according to the principles of minimal invasive surgery. The aim of this study was to verify if the laser is effective in the treatment of OVM for the purpose of the clinical findings and the postoperative course. The Authors concluded that the laser can be considered the "gold standard" for treating OVM.
The power of the bubble: comparing ultrasonic and laser activated irrigation
The major problem of irrigation is the fluid motion within the confined geometry of the root canal : efficient dispersion of the liquid is difficult, conventional irrigation is limited due to the absence of turbulence over much of the canal volume, vapour lock may limit apical cleaning and disinfection, there is also a stagnation plane beyond the needle tip. The best way to improve irrigant penetration and biofilm removal is achieved by means of the agitation of the fluid. Today ultrasonic activation appears to be the best way to activate and potentiate irrigants among the present-day used means and marketed systems. Another way to activate irrigation solutions is the use of lasers: laser activated irrigation or photon-initiated acoustic streaming have been investigated. Based on present-day research it appears that the efficacy of laser activation (especially with Erbium lasers) can be more efficient thanks to the induction of specific cavitation phenomena and acoustic streaming. Other wavelengths are now explored to be used for laser activated irrigation.
Orofacial hereditary haemorrhagic telangiectasia: high power diode laser in early and advanced lesion treatment
Angela Tempesta, Simonetta Franco, Simona Miccoli, et al.
Hereditary Haemorrhagic Telangiectasia (HHT) is a muco-cutaneous inherited disease. Symptoms are epistaxis, visceral arterio-venous malformations, multiple muco-cutaneous telangiectasia with the risk of number increasing enlargement, bleeding, and super-infection. The aim of this work is to show the dual Diode Laser efficacy in preventive treatment of Early Lesions (EL < 2mm) and therapeutic treatment of Advanced Lesions (AL < 2mm). 21 patients affected by HHT with 822 muco-cutaneous telangiectatic nodules have been treated in several sessions with local anaesthesia and cooling of treated sites. EL preventive treatment consists of single Laser impulse (fibre 320) in ultrapulsed mode (2 mm single point spot). AL therapeutic treatment consists of repeated Laser impulses in pulsed mode (on 200ms / off 400ms). According to the results, Diode Laser used in pulsed and ultra-pulsed mode is very effective as noninvasive treatment both in early and advanced oral and perioral telangiectasia.
Orofacial lymphatic malformation: management with a three steps diode laser protocol
Simona Miccoli, Angela Tempesta, Luisa Limongelli, et al.
Lymphatic Malformation (LM) according to ISSVA Classification, is a rare benign disorder with unknown aetiology. LM may grow slowly over years or develop rapidly over the course of days becoming a bulky lump, infected or bleeding. We propose our three steps Diode Laser protocol for LM management, based on its persistent vascular blood component. 1. Histological and cytological examination, to evaluate the vascular blood component (10-40%), shows mature lymphocytes with red blood cells and endothelial cells. 2. Diode Laser Photocoagulation (DLP) in pulsed mode (on 100ms / off 400ms) at 10W and 800nm with a 300μm fibre kept 2-3mm from the tissues, to reduce the lesion. 3. Diode Laser surgical excision in pulsed mode (on 50ms / off 200ms) at 8W and 800nm with a 300 μm fibre in close contact with tissues, and histological intraoperative margins control on frozen sections. Even if it has inconstant results (lesions decreasing rate is 10% to 40% proportionally to vascular blood component), DLP simplifies the last and the most important step. Use of Diode Laser also in surgical excision reduces intra and postoperatory complications.
How to bond to root canal dentin
Luminita Nica, Carmen Todea, Gabriel Furtos, et al.
Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.
Micro-CT application for infiltration technology in paedodontics and orthodontics
Alexandru Ogodescu, Adrian Manescu, Ana Emilia Ogodescu, et al.
White spot lesions are an early evidence of the demineralization of the enamel surface and are the first step of future caries that will develop on those spots. Recently, a new and innovative biotechnology was developed – Icon, a caries infiltrant to be introduced in early tooth lesions, able to achieve a very good preservation of dental structures. In order to assess the infiltrant penetration level inside the white spot lesions, a non-destructive 3D visualization method is needed. Phase-contrast micro computed tomography using synchrotron radiation proved to be a powerful technique, allowing a 3D morphological investigation of all the components of interest: tooth structure, white spot lesions extension, infiltrant penetration inside the lesions, without the need of slicing the specimens. From our clinical experience and the conducted research we can conclude that this technology is effective and useful in many clinical situations encountered in pediatric dentistry.
PEMFs: new post-surgical management in dentristry
Aim of study: the possible effects on dental postsurgical management using small and not invasive devices: RecoveryRx or ActiPatch producted by Bioelectronics company (USA)

Materials and methods: review of literature using searching engines Keywords: PEMFs, postsurgical treatment, pain, wound healing, RecoveryRx, ActiPatch

Results: Pulsed Electro Magnetic Fields have been used extensively for decades for many conditions and medical disciplines. Imperceptible cell dysfunction that is not corrected early can lead to disease. Fine-tuning can be done daily in only minutes, using pulsed electromagnetic fields (PEMFs). In addition, when there is a known imbalance (when symptoms are present) or there is a known disease or condition, PEMF treatments, used either alone or along with other therapies, can often help cells rebalance dysfunction faster. It is seen in literature that RecoveryRX and ActiPatch improve the cell metabolism, rebalance the membrane potential difference, improve the circulation and the oxigenation of the tissues, acceleration of osteogenesis, acceleration repair of soft tissues, reduce pain.

Conclusion: the RecoveryRX and ActiPatch devices could improve the postsurgical healing reducing the patient discomfort.
Diode laser photocoagulation in PHACES syndrome hemangiomas: a case series
U. Romeo, N. Russo, A. Polimeni, et al.
PHACES syndrome is a pediatric syndrome with cutaneous and extra-cutaneous manifestations, such as Posterior fossa defects, Hemangiomas, Arterial lesions, Cardiac abnormalities/aortic coarctation, Eye abnormalities and Sternal cleft. Facial hemangiomas affect the 75% of patients and may arise on the oral mucosa or perioral cutaneous regions. In this study we treated 26 Intraoral Haemangiomas (IH) and 15 Perioral Haemangiomas (PH) with diode laser photocoagulation using a laser of 800±10nm of wavelength. For IH treatment an optical fiber of 320 μm was used, and the laser power was set ted at 4 W (t-on 200 ms / t-off 400ms; fluence: 995 J/cm2). For PH treatment an optical fiber of 400 μm at the power of 5 W was used (t-on 100 ms / t-off 300 ms; fluence: 398 J/cm2). IH healed after one session (31%), the other (69%) after two sessions of Laser therapy. In each session, only a limited area of the PH was treated, obtaining a progressive improvement of the lesion. Diode laser photocoagulation is an effective option of treatment for IH and PH in patients affected by PHACE because of its minimal invasiveness. Moreover laser photocoagulation doesn’t have side effects and can be performed repeatedly without cumulative toxicity. Nevertheless, more studies are required to evaluate the effectiveness of the therapy in mid and long time period.
Survival time of endodontically treated teeth: a 7-year retrospective clinical study
Bogdan Baldea, Silvana Canjau, Dragos Popescu, et al.
The aim of this retrospective clinical study was to examine the survival time of endodontically treated teeth (ETT) and the factors that may influence the failure risk, over a period of up to 7 years. The files of 67 patients that received metal free post and core restorations using a standardized technique were analyzed. The survival probability was assessed using Kaplan-Meyer analysis and Log Rank (Matel-Cox). Cox regression was used to assess the risk of failure and to identify possible covariates. The average survival time of the ETT was 6.6 Years. The cumulative failure rate was 5.82% for all type of the restored endodontically treated teeth. The main failure type was encountered in the cervical area of the teeth, and due to the extensive hard tissue loss, the teeth were extracted.
Photodynamic therapy in peri-implantitis
Peri-implantitis is like Damocles sword, threatening over our final results as is the most common cause of implant failure. It is, was and will be one of the most challenging tasks for the practitioner to deal with. The rough implant surface offers the ideal conditions for the pathogenic bacteria to stick and multiply. Even more, the growing mature biofilm is harder to eliminate. Mechanical cleaning and rinsing is not capable to destroy it entirely. Most treatment protocols include strong antibiotics, disregarding their side effects and interactions with other medications.
Practical considerations on frenectomy
Lucia Moldoveanu, Florin Ciprian Badea, Alin Alexandru Odor
Besides surgically classical frenectomy, modern dentistry currently allows its approach by dental laser.

Materials and Method: We proposed clinical observation of the results obtained by frenectomy with/without frenoplasty made by laser Er,Cr:YSGG 2780 nm.

Results: The patients reported no pain, bleeding, swelling or major discomfort during the postoperative control of the following day. In terms of psycho-emotional reactions, both patients well behave well, the calm being given by no pain, bleeding, suture or edema.

Discussions: The accuracy of this method, as well as the use of additional means of healing, allow satisfactory results both for patient and physician. Working parameters depend on the type of laser that is used, in our case Biolase Waterlase MD Turbo, regularly used in Toldimed Clinic in Constanta.

Conclusions: Our study reveals that the possibilities regarding the surgical modeling of the lower lip frenulum are higher due to laser than the classical surgical approach. Moreover, a major role in the prevention of relapse by inappropriate healing is represented by the approach of frenectomy accompanied by frenuloplasty.
Treatment of oral soft tissues benign tumors using laser
Bogdan Crisan, Mihaela Baciut, Liana Crisan, et al.
The present study aimed to assess the efficacy and indications of surgical laser therapy in the treatment of oral soft tissues benign tumors compared to classic surgery. A controlled clinical study was conducted in a group of 93 patients presenting various forms of oral soft tissues benign tumors. These patients were examined pre-and postoperatively and the oral benign tumors were measured linearly and photographed. The surgery of laser-assisted biopsy excision of oral benign tumors was carried out using a diode laser device of 980 nm. In patients who received surgical laser treatment, therapeutic doses of laser to biostimulate the operated area were administered on the first day after the surgery. The interventions of conventional excision of oral soft tissues benign tumors consisted in removing them using scalpel. In patients who have received therapeutic doses of laser for biostimulation of the operated area, a faster healing of wound surfaces and tumor bed was observed during the first days after surgery. Two weeks after the surgical treatment, good healing without scarring or discomfort in the area of excision was documented. Surgical treatment of oral soft tissues benign tumors with laser assisted postoperative therapy confirms the benefits of this surgical procedure. A faster healing process of the excision area due to laser biostimulation of low intensity has been observed in patients with surgical laser assisted treatment in the postoperative period.
Alternative techniques in root canal debridement
Ruxandra Luca, Carmen Todea M.D., Cosmin Bălăbuc, et al.
Studies have demonstrated that conventional chemo-mechanical preparation is limited regarding the decontamination of the endodontic space, which is why alternative techniques such as laser radiation have their importance in the modern endodontic treatment. The present study aims to assess the possibility of improving the debridement of the root canals by removing smear layer using Er: YAG laser radiation. We used 18 extracted teeth, which were subjected to the same initial protocol and then divided into 5 study groups: the control group has not been treated with laser; the other 4 groups were exposed to laser radiation using two different geometries peaks of quartz and two energy levels. Scanning electronic microscopy revealed an increased efficiency in the debridement of all interested areas when using PIPS and XPulse tips at proper energy. In the two groups treated with inferior laser energy, the debridement didn’t prove to be superior to the conventional treatment.
Laser assisted irrigation and hand irrigation for root canal decontamination: a comparison
M. Olivi, M. Stefanucci, C. Todea
Aim: to compare the bactericidal efficiency of conventional method and LAI for root canal decontamination. Material and method: 22 human single root teeth, extracted for periodontal problems, mechanically prepared up to ISO 25 at the working lenght were divided in 2 groups: after sterilization, the teeth were infected with enterococcus faecalis and incubated for 4 weeks. Group A: 10 teeth were irrigated with conventional hand technique (CI): 3ml of 5% NaClO were used for two times of 30s each and after washing with sterile bi-distilled water for 20s, a final irrigation was performed with 3ml of 17% EDTA. Group B: 10 teeth were irrigated with 3ml of NaClO and activated by erbium laser, two cycles of 30s; also the final irrigation with 3ml of 17% EDTA was activated by erbium laser. In both the groups a resting time of 30s was used between the two sessions to allow the reaction rate of NaClO. The Erbium laser 2940 nm (LightWalker AT, Fotona; Lublijana, Slovenia) was used with 50microsecond pulse duration, at 15Hz, 20mJ, with a 600micron PIPS tip. Two samples were used as positive and negative control.
Passivity of the bars manufactured using current technologies: laser-sintering, casting, and milling
Diana Popescu, Sabin Popescu, Daniel Pop, et al.
Implant overdentures are often selected as therapeutic options for the treatment of edentulous mandibles. ”Passive-fit” between the mesostructures and the implants plays an important role in the longevity of the implant-prosthetic assembly in the oral cavity. ”Mis-fit” can cause mechanical or biological complications. The purpose of this test was to investigate the passive adaptation of the bars manufactured through different technologies, and in this respect two bars (short and long) were fabricated by each process: laser-sintering, milling, casting. The tensions induced by tightening the connection screw between the bars and the underlying implants were recorded using strain gauges and used as measuring and comparing tool in testing the bars’ ”passivity”. The results of the test showed that the milled bars had the best ”passive-fit”, followed by laser-sintered bars, while cast bars had the lowest adaptation level.
On the reliability of the holographic method for measurement of soft tissue modifications during periodontal therapy
Stefan-Ioan Stratul, Cosmin Sinescu, Meda Negrutiu, et al.
Holographic evaluations count among recent measurement tools in orthodontics and prosthodontics. This research introduces holography as an assessment method of 3D variations of gingival retractions. The retraction of gingiva on frontal regions of 5 patients with periodontitis was measured in six points and was evaluated by holographic methods using a He-Ne laser device (1mV, Superlum, Carrigtwohill, Ireland) inside a holographic bank of 200 x 100cm. Impressions were taken during first visit and cast models were manufactured. Six months after the end of periodontal treatment, clinical measurements were repeated and the hologram of the first model was superimposed on a final model cast, by using reference points, while maintaining the optical geometric perimeters. The retractions were evaluated 3D in every point using a dedicated software (Sigma Scan Pro,Systat Software, SanJose, CA, USA). The Wilcoxon test was used to compare the mean recession changes between baseline and six months after treatment, and between values in vivo and the values on hologram. No statistically significant differences between values in vivo and on the hologram were found. In conclusion, holography provides a valuable tool for assessing gingival retractions on virtual models. The data can be stored, reproduced, transmitted and compared at a later time point with accuracy.
Reliability of CBCT as an assessment tool for mandibular molars furcation defects
Adrian George Marinescu, Marius Boariu, Darian Rusu, et al.
Introduction. In numerous clinical situations it is not possible to have an exact clinical evaluation of the furcation defects. Recently the use of CBCT in periodontology has led to an increased precision in diagnostic. Aim. To determine the accuracy of CBCT as diagnostic tool of the furcation defects. Material and method. 19 patients with generalised advanced chronic periodontitis were included in this study, presenting a total of 25 lower molars with different degrees of furcation defects. Clinical and digital measurements (in mm) were performed on all the molars involved. The data obtained has been compared and statistically analysed. Results. The analysis of primary data has demonstrated that all the furcation grade II and III defects were revealed using the CBCT technique. Regarding the incipient defects (grade I Hamp < 3mm), the dimensions measured on CBCT images were slightly bigger. The results have shown that 84% of the defects detected by CBCT have been confirmed by clinical measurements. These data are similar to those revealed by other studies1. Conclusions. The use of CBCT technique in evaluation and diagnosis of human mandibular furcation defects can provide many important information regarding the size and aspect of the interradicular defect, efficiently and noninvasively. CBCT technique is used more effectively in detection of advanced furcation degree compared to incipient ones. However, the CBCT examination cannot replace, at least in this stage of development, the clinical measurements, especially the intraoperative ones, which are considered to represent the „golden standard” in this domain.
Systems, Devices and Applications of Optical Coherence Tomography for Biomedical Imaging
icon_mobile_dropdown
Trends in optical coherence tomography applied to medical imaging
The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.
Scanning in biomedical imaging: from classical devices to handheld heads and micro-systems
We review some of the most important scanning systems that are competitive in high-end biomedical imaging applications such as Optical Coherence Tomography (OCT), but also Confocal Microscopy (CM) or multiphoton microscopy. Both 1-D (uni-dimensional) and 2-D (bi-dimensional) scanning systems are considered. The paper discusses different scanners, including polygon mirror, galvanometer-based and Risley prisms. Their configurations and characteristics, as well some of our contributions in the domain are presented. The tendency of applying them into special designs such as handheld scanning probes and endoscopes – the latter with MEMS (Micro-Electro-Mechanical Systems) and micro-systems is pointed out. A discussion on further advancements of scanning technology in biomedical applications in general and in OCT in particular concludes the study.
New signal analysis methods for laser doppler flowmetric recordings
G. E. Drăgănescu, Carmen Todea
The laser Doppler flowmetry devices give a series of information like the blood flux and some statistical parameters, automatically estimated. There are also new important attempts based on the Fourier transform of the flow flux signal which gather more information from the laser Doppler flowmetry. The amplitude spectra estimated in these articles, exhibit a series of peaks corresponding to the cardiac variation of the blood flow and noise components of the flow flux signals, dependent on the state of the tooth.

The aim of our investigations is to introduce new signal processing methods, based on wavelet continuous tranform, which express in a more sensitive manner the modifications of the flow flux signal with the state of the tooth, and to introduce new quantitative parameters, defined in a previous paper. These parameters express, in a more sensitive manner the modifications of the pulp flow flux signal in relation with the pulp tooth healt, and to introduce new quantitative parameters, defined in a previous paper. These parameters express, in a sensitive way the changes of the blood flux.

For practical investigations we used a series of signals recorded with the aid of a Laser Doppler Blood Flow Monitoring device (Moor Instruments) and processed with the computer.
Maximum permissible exposure of the retina in the human eye in optical coherence tomography systems using a confocal scanning laser ophthalmoscopy platform
Sian Rees, George Dobre
When using scanning laser ophthalmoscopy to produce images of the eye fundus, maximum permissible exposure (MPE) limits must be considered. These limits are set out in international standards such as the National Standards Institute ANSI Z136.1 Safe Use of Lasers (USA) and BS EN 60825-1: 1994 (UK) and corresponding Euro norms but these documents do not explicitly consider the case of scanned beams. Our study aims to show how MPE values can be calculated for the specific case of retinal scanning by taking into account an array of parameters, such as wavelength, exposure duration, type of scanning, line rate and field size, and how each set of initial parameters results in MPE values that correspond to thermal or photochemical damage to the retina.
Control architectures of galvanometer-based scanners for an increased precision and a faster response
High-end biomedical applications, such as Optical Coherence Tomography (OCT) or Confocal Microscopy (CM) require both precision and speed. The latter is essential in OCT by example to achieve in vivo, real time imaging – with video rate imaging capability. An essential element of this effort to achieve such speeds in OCT by example is the optomechatronic system used for lateral scanning. It usually consists of a dual axis double galvanometer-based scanner (GS). However, GSs are used in a larger variety of applications in biomedical imaging – not only in lateral scanning. Due to the importance of the topic, we have approached different aspects of GSs technology, including scanning and control functions, duty cycle optimization, and minimization of artifacts. The paper proposes a Model-based Predictive Control (MPC) structure for driving the GSs in order to achieve either an improved precision or a higher speed. The predictive control solution was tested for different types of input signals. Reasons for choosing the objective function and the predictive horizons are discussed. The GS was characterized by a second order mathematical model (MM), with the values of the parameters identified experimentally. Simulations were carried out using Matlab Simulink. The control results achieved are compared with the Proportional Integrative Derivative controller with Lags (PID-L1). The conclusions support the proposed control solution and its implementation in applications.
Risley prisms scanners with different configurations: a multi-parametric analysis
Scanners with rotational Risley prisms are one of the main options for achieving bi-dimensional (2D) scanning, including for biomedical applications such as Confocal Microscopy (CM) or Optical Coherence Tomography (OCT). Different configurations of such devices exist, including with rotational, tilting or rotational plus tilting prisms. The analysis of the most used Risley prisms scanners, with rotational elements has been approached in different ways, to determine exactly or approximately their scan patterns. While we have previously developed such an exact analysis using mechanical design programs, in this paper a first multi-parametric analysis is carried out, for two of the possible configurations of scanners with two rotational prisms. A comparison is done between the exact and the approximate equations of the maximum deviations, and also between the two configurations considered. The minimum linear deviation produced by one of the scanner configuration is also deduced.
Driving solutions and optomechanical design of scanners with Risley prisms
Iosif Kaposta, Virgil-Florin Duma
The issue of obtaining precise scan patterns using optical wedges (usually named Risley prisms) devices is related to the driving solutions of the prisms. In this paper we make first an overview of the existing and possible devices with Risley prisms – especially from the point of view of their components and of the relative movement between their components. Further on, we discuss several driving solutions for the accurate driving of Risley prisms with different dimensions and masses – thus for different applications, from satellite positioning to biomedical imaging. The different levels of accuracy required are taken into account. Another aspect that may suggest different driving solutions is the coupled and uncoupled movement of the two prisms. We thus make a preliminary study regarding specific solutions for prisms that have to move with a given relative speed, with a set of given relative speeds or with the possibility to adjust it within certain limits. Some of the parameters and of the envisaged errors of three types of driving solutions are pointed out.
Confocal imaging through an endoscopic rod
Matt Galloway, Kayla Gabriel, George Dobre
Endoscopic rods (such as the Hopkins variety) are based on a tubular design containing a sequence of refractive optical structures1. They are intended to offer a wide angle of view but often at the expense of performance in terms of field curvature. They are used in areas of biomedicine that require visualisation of live tissue at the distal end, enabling clinicians to perform a variety of endoscopy procedures including biopsy.

Here we demonstrate a scanning confocal arrangement with the endoscopic rod used as an optical conduit, guiding the investigation beam to a resolution target placed at the distal end and guiding the backscattered light back to the detector.

The data presented in this study highlights the possible new contributions of this method to aid Optical Coherence Tomography (OCT) measurements in vivo and what could be expected of its application in terms of scanangle (field of view) and transmission performance.
Design programs for optical chopper wheels with different configurations
Octavian Cira, Virgil-Florin Duma
Optical choppers are a most used device in laser setups (including in biomedical applications) for generating laser impulses, accurate attenuation, obscuration or elimination of different wavelengths. We present the design programs we are developing for macroscopic optical choppers with rotational wings. We have proposed previously the analysis of different types of chopper wheels with windows: (i) with linear margins (the “classical” device) and (ii) with semicircular margins, inward or outward (the “eclipse” choppers). The latter has been, to the best of our knowledge, of our proposal (patent pending). This rigorous mathematical analysis took into account all the possible relationships between the constructive and kinematics parameters of the device. This theory allowed for developing a design program for each type of choppers – to obtain a specific type of output laser impulse. Examples of applying this program are presented, for each type of laser beams that has been considered so far: top-hat (with constant intensity distribution over the entire beam section), Gaussian and Bessel. A discussion on the laser impulses obtained with each type of device and laser beam concludes the paper.
Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography
Cosmin Sinescu, Florin Ionel Topala, Meda Lavinia Negrutiu, et al.
The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.
Imagistic evaluation of matrix bone interface
Meda L. Negruţiu, Cosmin Sinescu, Adrian Manescu, et al.
The problematic elements of bone regenerative materials are represented by their quality control methods. The defects repaired by bone grafting material were evaluated by en face optical coherence tomography and by synchrotron radiation micro-CT. The images obtained by efOCT show defects in some of the investigated samples, at the bone interface with different osteoconductive bone substitutes and we were able to detect gaps as small as 50 μm. After the common synchrotron radiation micro-CT investigations, the slides were reconstructed and the 3D model was obtained. Along with the possibility of navigating inside the structure, one big advantage of this technique was pointed out: the remaining regenerative materials can be separated from the normal bone and the new bone can be visualized. Optical coherence tomography can be performed in vivo and can provide a qualitative and quantitative evaluation of the bone augmentation procedure.
Different matrix evaluation for the bone regeneration of rats' femours using time domain optical coherence tomography
The osteoconductive materials are important in bone regeneration procedures. Three dimensional (3D) reconstructions were obtained from the analysis. The aim of this study is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on two artificial matrixes inserted in previously artificially induced defects. For this study, under strict supervision 20 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were IngeniOss (for ten samples) and 4Bone(for the other ten samples). These materials were inserted into the induced defects. The femurs were investigated at 1 month, after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly created due to the osteoinductive process. The TD-OCT has proven a valuable tool for the non-invasive evaluation of the matrix bone interfaces.
The advantages of a swept source optical coherence tomography system in the evaluation of occlusal disorders
Occlusal disorders are characterized by multiple dental and periodontal signs. Some of these are reversible (such as excessive tooth mobility, fremitus, tooth pain, migration of teeth in the absence of periodontitis), some are not (pathological occlusal/incisal wear, abfractions, enamel cracks, tooth fractures, gingival recessions). In this paper we prove the advantages of a fast swept source OCT system in the diagnosis of pathological incisal wear, a key sign of the occlusal disorders. On 15 extracted frontal teeth four levels of pathological incisal wear facets were artificially created. After every level of induced defect, OCT scanning was performed. B scans were acquired and 3D reconstructions were generated. A swept source OCT instrument is used in this study. The swept source is has a central wavelength of 1050 nm and a sweeping rate of 100 kHz. A depth resolution determined by the swept source of 12 μm in air was experimentally measured. The pathological incisal wear is qualitatively observed on the B-scans as 2D images and 3D reconstructions (volumes). For quantitative evaluations of volumes, we used the Image J software. Our swept source OCT system has several advantages, including the ability to measure (in air) a minimal volume of 2352 μm3 and to collect high resolution volumetric images in 2.5 s. By calculating the areas of the amount of lost tissue corresponding to each difference of B-scans, the final volumes of incisal wear were obtained. This swept source OCT method is very useful for the dynamic evaluation of pathological incisal wear.
Imaging of oral pathological tissue using optical coherence tomography
Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.
Imaging of noncarious cervical lesions by means of a fast swept source optical coherence tomography system
Non-carious cervical lesions (NCCL) are defined as the loss of tooth substance at the cemento-enamel junction and are caused by abrasion, erosion and/or occlusal overload. In this paper we proved that our fast swept source OCT system is a valuable tool to track the evolution of NCCL lesions in time. On several extracted bicuspids, four levels of NCCL were artificially created. After every level of induced lesion, OCT scanning was performed. B scans were acquired and 3D reconstructions were generated. The swept source OCT instrument used in this study has a central wavelength of 1050 nm, a sweeping range of 106 nm (measured at 10 dB), an average output power of 16 mW and a sweeping rate of 100 kHz. A depth resolution determined by the swept source of 12 μm in air was experimentally obtained. NCCL were measured on the B-scans as 2D images and 3D reconstructions (volumes). For quantitative evaluations of volumes, the Image J software was used. By calculating the areas of the amount of lost tissue corresponding to each difference of Bscans, the final volumes of NCCL were obtained. This swept source OCT method allows the dynamic diagnosis of NCCL in time.