Proceedings Volume 10240

Laser Acceleration of Electrons, Protons, and Ions IV

Eric Esarey, Carl B. Schroeder, Florian J. Grüner
cover
Proceedings Volume 10240

Laser Acceleration of Electrons, Protons, and Ions IV

Eric Esarey, Carl B. Schroeder, Florian J. Grüner
Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 31 July 2017
Contents: 9 Sessions, 17 Papers, 19 Presentations
Conference: SPIE Optics + Optoelectronics 2017
Volume Number: 10240

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10240
  • Ion Acceleration I
  • Ion Acceleration II
  • Ion Acceleration III
  • Electron Acceleration I
  • Electron Acceleration II
  • Particle and Radiation Sources
  • Wakefield Excitation and Particle Dynamics
  • Poster Session
Front Matter: Volume 10240
icon_mobile_dropdown
Front Matter: Volume 10240
This PDF file contains the front matter associated with SPIE Proceedings Volume 10240, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Ion Acceleration I
icon_mobile_dropdown
Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)
Chen Lin, I. Jong Kim, Jinqing Yu, et al.
The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.
Ion wave breaking acceleration: study of breaking dynamics and finite trapping
B. Liu, J. Meyer-ter-Vehn, H. Ruhl, et al.
Laser driven ion wave breaking acceleration (IWBA) in a plasma wake field is investigated with the help of particle-in-cell (PIC) simulations and theoretical methods. IWBA operates in relativistic self-transparent plasma for laser intensities in the range of 1020-1023W/cm2. When propagating a laser pulse in a transparent plasma, a co-moving cold ion wave is produced due to ion oscillation. When driven strongly, the oscillation is nonlinear and eventually breaks. Then a fraction of ions is self-injected into the laser driven wake. The wakefield is square-wave like and sensitive to the injected ions. After an injection, the wake weakens and then there is no further injection. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional (3D) geometry, the injection occurs localized close to the laser axis producing highly directed bunches.
Energetic ion bunches produced in under-dense plasmas by an intense laser pulse (Conference Presentation)
The mechanisms of the laser acceleration of ions in under-dense or near-critical plasmas (gas, foams) are at their early stage of development [1, 2, 3]. They offer a better laser/electron coupling than in solid targets resulting in a more efficient ion acceleration. They also enable a high repetition rate operation and reduce the formation of debris which could damage the interaction chamber. Our work deals with this interaction regime and focuses on understanding how electrons and ions absorb energy from the laser pulse in low density plasmas. This interaction regime involves various non linear processes that strongly modify the particle distribution functions and induce strong non-local effects. The numerical simulations were performed with the Particle-In-Cell (PIC) code OCEAN [4]. By one dimensional PIC simulations, we have shown [5] that the interaction of a 1 ps long relativistic laser pulse with a under-critical homogeneous (0.5 n_c) plasma leads to a very high plasma absorption reaching 68 % of the laser pulse energy. By a very detailed analysis of the electrostatic and electromagnetic wave spectra in the plasma and a confrontation with the theory [6], we have demonstrated that this energy transfer originates from the process of stimulated Raman scattering in the relativistic regime. Due to the increase of the effective mass of the electrons oscillating in the relativistic laser wave, this instability occurs in plasmas with a density significantly larger than the quarter of critical density and permits a homogeneous electron heating all along the plasma followed by an efficient ion acceleration at the plasma edges. We also have observed the formation of cavities [7], which lead to the formation of quasi-monoenergetic bunches of ions inside the plasma. References [1] A. Macchi, M. Borghesi and M. Passoni, Rev. Mod. Phys. 85 (2013), p. 751. [2] L. Willingale et al, Phys. Rev. Lett. 96 (2006), p. 245002. [3] E d’Humières et al, Journal of Physics : Conference Series 244.4 (2010), p. 042023. [4] R. Nuter and V. Tikhonchuk, Phys. Rev. E 87 (2013), p. 043109 [5] J. G. Moreau, E. d’Humières, R. Nuter and V. Tikhonchuk, ArXiv 1610.01301 (2016) [6] S. Guérin et al, Physics of Plasmas 2.7 (1995), p. 2807. [7] H. C. Kim, R. L. Stenzel and A. Y. Wong, Phys. Rev. Letters 33 (1974) 886
Ion Acceleration II
icon_mobile_dropdown
Laser-based fast-neutron spectroscopy (Conference Presentation)
Ishay Pomerantz, Itay Kishon, Annika Kleinschmidt, et al.
Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.
Laser-driven proton acceleration with nanostructured targets
Simon Vallières, Antonia Morabito, Simona Veltri, et al.
Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The efficiency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, efficiency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured films are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL.
Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)
Sven Steinke, Qing Ji, Stepan S. Bulanov, et al.
We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ~〖5×10〗^19 Wcm-2 at spot size of 0=53 m on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Controlling laser-ion acceleration through pulse chirping
F. Mackenroth, A. Gonoskov, M. Marklund
We present an in-depth study of the recently proposed novel laser-ion acceleration scheme Chirped-standing-wave acceleration. This scheme surpasses the scaling properties of previously studied thermal laser-based ion acceleration scheme while simultaneously offering unprecedented stability and control over the ion beam properties. In this work we elaborate on the possibilities of controlling ion beam properties such as ion energy and particle number collectively by tuning the laser’s chirp and the target parameters in a consistent way. We provide quantitative estimates for the proposed scheme’s capabilities and highlight its tunability.
Ion Acceleration III
icon_mobile_dropdown
Direct acceleration in intense laser fields used for bunch amplification of relativistic electrons
J. Braenzel, A. A. Andreev, L. Ehrentraut, et al.
A method, how electrons can be directly accelerated in intense laser fields, is investigated experimentally and discussed with numerical and analytical simulation. When ultrathin foil targets are exposed with peak laser intensities of ~ 1x1020 W/cm2 , slow electrons ( ~ keV kinetic energy), that are emitted from the ultrathin foil target along laser propagation direction, are post-accelerated in the transmitted laser field. They received significant higher kinetic energies (MeV), when this interaction was limited in duration and an enhanced number of fast electrons were detected. The decoupling of the light field from the electron interaction we realized with a second separator foil, blocking the transmitted laser light at a particular distance and allowing the fast electrons to pass. Variation of the propagation distance in the laser field results in different energy gains for the electrons. This finding is explained with electron acceleration in the electromagnetic field of a light pulse and confirms a concept being discussed for some time. In the experiments the effect manifests in an electron number amplification of about 3 times around a peak at 1 MeV electron energy. Measurements confirmed that the overall number in the whole bunch is enhanced to about 109 electrons covering kinetic energies between 0.5 to 5 MeV. The method holds promise for ultrashort electron bunch generation at MeV energies for direct application, e.g. ultra-fast electron diffraction, or for injection into post accelerator stages for different purposes.
Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress
W. P. Wang, B. F. Shen, Z. Z. Xu
The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.
Electron Acceleration I
icon_mobile_dropdown
Optimization of the electron beam properties from intense laser pulses interacting with structured gas jets
K. K. Swanson, H.-E. Tsai, S. K. Barber, et al.
Laser plasma acceleration has been intensely investigated for its ability to produce energetic, ultrashort electron bunches in a compact distance. A high intensity laser pulse propagating through a plasma expels the electrons from the optical axis via the ponderomotive force, leaving behind a column of ions and driving a density wake. The accelerating electric fields present in the wake can reach several orders of magnitude greater than those found in radio-frequency cavities, allowing for compact systems much smaller than those using conventional accelerators. This compact source can provide electrons for various applications including stages for a high energy collider or for production of x-ray pulses from coherent undulator radiation. However, these applications require tunable, stable and high-quality electron beams. We report on a study of controlled injection along a shock-induced density downramp of laser-plasma- accelerated electrons through precision tailoring of the density profile produced from a mm-scale gas jet. Using BELLA Center’s TREX Ti:Sapphire laser, the effects of the plasma density profile and the tilt of the shock front on the beam spatial profile, steering, and energy were investigated experimentally. To explain these rela- tionships, we propose simple models which agree well with experimental results. Using this technique, electron beam quality was tailored, allowing for the production of high-quality electron beams with percent-level energy spreads over a range of energies.
Probing plasma wakefield using femtosecond relativistic electron bunches (Conference Presentation)
Wei Lu, Jianfei Hua
Light-speed moving wakefield structure in a laser plasma accelerator is directly observed and quantitatively reconstructed using an ultrashort relativistic electron probe in a single shot. The stable electron probes utilized here are directly generated through laser wakefield acceleration via ionization injection. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. From the density image of the probe, the local plasma wavelength, the wake width and the electric field in linear wakes can be accurately calculated, leading to the first observation of plasma wakes at the density as low as 1017 cm-3. Furthermore, detailed features of multiple wakes excited by a laser with the aberrated profile are observed and confirmed by 3D PIC simulations. By varying the time delay between the driving laser and the probe, time-resolved observation of the wake evolution (excitation, propagation, and damping) can be readily obtained, and this suggests that ultrafast electron probe can be a powerful new tool for the study of wakefield acceleration. The method is particularly well suited for visualizing linear wakefields that can accelerate both electrons and positrons as well as collective fields associated with shocks and instabilities in plasmas and warm dense matter.
Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.
High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)
Jiansheng Liu, Wentao Wang, Wentao Li, et al.
One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and ~0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of ~3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).
Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching (Conference Presentation)
We report the observation of energy-spread compensation of electron bunches in a laser wakefield accelerator in experiment. The compensation was caused by the gradient wakefield in plasma wake, and the energy spectra of the bunches evolved during the acceleration so that we propose a new method to diagnose the longitudinal length of the ultrashort electron bunch. By analyzing the energy spectra of electron bunches with different acceleration length, the wakefield gradient difference and the wakefield slope of the bunch could be estimated by combining with the slippage between the plasma wave and the electron bunch, thus the electron bunches′ longitudinal length could be estimated. By applying this new method, the longitudinal length of electron bunches with charge of about 40 pC generated from a laser wakefield accelerator was estimated to be (2.4 ± 2.2) μm in experiment, which was in good agreement with three-dimension particle-in-cell simulations.
Electron Acceleration II
icon_mobile_dropdown
Laser-assisted capillary discharge for enhanced guiding of tightly focused laser pulses at low densities
J. Daniels, A. J. Gonsalves, C. V. Pieronek, et al.
Laser-plasma accelerators (LPAs) rely on intense laser fields that create wakes in plasmas. Advancement in the field of LPAs depends on extending the laser-plasma interaction length. State-of-the-art accelerators make use of laser guiding by capillary discharge channels. The transverse density profile (channel depth) of such channels confines the laser, and the on-axis density determines the energy transfer to the wake. The transverse profile can be controlled by choosing the radius of the capillary, but laser-induced capillary damage occurs when the radius is reduced to achieve the required channel depth. Both the on-axis density and the transverse profile depend on the pressure inside the capillary before discharge. As the pressure is reduced to increase the interaction length, confinement of the laser beam is reduced. A scheme to improve laser guiding at low densities by locally heating the plasma with a secondary, nanosecond-scale heater laser has been implemented, and preliminary results are presented here. Heating of the plasma and modified confinement of the main laser pulse have been demonstrated.
Wide-angle electron beams from laser-wakefield accelerators
E. Brunetti, X. Yang, F. Y. Li, et al.
Advances in laser technology have driven the development of laser-wakefield accelerators, compact devices that are capable of accelerating electrons to GeV energies over centimetre distances by exploiting the strong electric field gradients arising from the interaction of intense laser pulses with an underdense plasma. A side-effect of this acceleration mechanism is the production of high-charge, low-energy electron beams at wide angles. Here we present an experimental and numerical study of the properties of these wide-angle electron beams, and show that they carry off a significant fraction of the energy transferred from the laser to the plasma. These high-charge, wide-angle beams can also cause damage to laser-wakefield accelerators based on capillaries, as well as become source of unwanted bremsstrahlung radiation.
Particle and Radiation Sources
icon_mobile_dropdown
Relativistic electron beams driven by single-cycle laser pulses at kHz repetition rate (Conference Presentation)
Jérôme Faure, Diego Guénot, Dominykas Gustas, et al.
Laser-plasma accelerators are usually driven by 100-TW class laser systems with rather low repetition rates. However, recent years have seen the emergence of laser-plasma accelerators operating with kHz lasers and energies lower than 10 mJ. The high repetition-rate is particularly interesting for applications requiring high stability and high signal-to-noise ratio but lower energy electrons. For example, our group recently demonstrated that kHz laser-driven electron beams could be used to capture ultrafast structural dynamics in Silicon nano-membranes via electron diffraction with picosecond resolution. In these first experiments, electrons were injected in the density gradients located at the plasma exit, resulting in rather low energies in the 100 keV range. The electrons being nonrelativistic, the bunch duration quickly becomes picosecond long. Relativistic energies are required to mitigate space charge effects and maintain femtosecond bunches. In this paper, we will show very recent results where electrons are accelerated in laser-driven wakefields to relativistic energies, reaching up to 5 MeV at kHz repetition rate. The electron energy was increased by nearly two orders of magnitude by using single-cycle laser pulses of 3.5 fs, with only 2.5 mJ of energy. Using such short pulses of light allowed us to resonantly excite high amplitude and nonlinear plasma waves at high plasma density, ne=1.5-2×1020 cm-3, in a regime close to the blow-out regime. Electrons had a peaked distribution around 5 MeV, with a relative energy spread of ~30 %. Charges in the 100’s fC/shot and up to pC/shot where measured depending on plasma density. The electron beam was fairly collimated, ~20 mrad divergence at Full Width Half Maximum. The results show remarkable stability of the beam parameters in terms of beam pointing and electron distribution. 3D PIC simulations reproduce the results very well and indicate that electrons are injected by the ionization of Nitrogen atoms, N5+ to N6+, leading to the formation of an electron bunch of 1 fs duration. The interaction of single-cycle pulses with the plasma also leads to new physical effects. We have observed experimental evidence that plasma dispersion cannot be neglected in this regime. This is due to the extremely broad bandwidth of the laser, extending from 400 nm to 1000 nm, and to the high electron density. Therefore, the acceleration process is optimal when small positive chirps are introduced: the negative dispersion of the plasma then causes the re-compression of the laser pulse inside the plasma. Simulations indicate that this help localizing the injection process, leading to single femtosecond electron bunch. Such a kHz femtosecond electron source will pave to way to numerous innovative applications, such as sub-10 fs electron diffraction, radiolysis of water with unprecedented resolution or the generation of femtosecond X-ray at kHz.
Laser-driven electron beam generation for secondary photon sources with few terawatt laser pulses
K. Bohacek, U. Chaulagain, V. Horny, et al.
Relativistic electron beams accelerated by laser wakefield have the ability to serve as sources of collimated, point-like and femtosecond X-ray radiation. Experimental conditions for generation of stable quasi-monoenergetic electron bunches using a femtosecond few-terawatt laser pulse (600 mJ, 50 fs) were investigated as they are crucial for generation of stable betatron radiation and X-ray pulses from inverse Compton scattering. A mixture of helium with argon, and helium with an admixture of synthetic air were tested for this purpose using different backing pressures and the obtained results are compared. The approach to use synthetic air was previously proven to stabilize the energy and energy spread of the generated electron beams at the given laser power. The accelerator was operated in nonlinear regime with forced self-injection and resulted in the generation of stable relativistic electron beams with an energy of tens of MeV and betatron X-ray radiation was generated in the keV range. A razor blade was tested to create a steep density gradient in order to improve the stability of electron injection and to increase the total electron bunch charge. It was proven that the stable electron and X-ray source can be built at small-scale facilities, which readily opens possibilities for various applications due to availability of such few-terawatt laser systems in many laboratories around the world.
High-quality electron bunch production for high-brilliance Thomson Scattering sources
Paolo Tomassini, Luca Labate, Pasquale Londrillo, et al.
Laser Wake Field accelerated electrons need to exhibit a good beam-quality to comply with requirements of FEL or high brilliance Thomson Scattering sources, or to be post-accelerated in a further LWFA stage towards TeV energy scale. Controlling electron injection, plasma density profile and laser pulse evolution are therefore crucial tasks for high-quality e-bunch production. A new bunch injection scheme, the Resonant Multi-Pulse Ionization Injection (RMPII), is based on a single, ultrashort Ti:Sa laser system. In the RMPII the main portion of the pulse is temporally shaped as a sequence of resonant sub-pulses, while a minor portion acts as an ionizing pulse. Simulations show that high-quality electron bunches with energies in the range 265MeV −1.15GeV , normalized emittance as low as 0.08 mm·mrad and 0.65% energy spread can be obtained with a single 250 TW Ti:Sa laser system. Applications of the e-beam in high-brilliance Thomson Scattering source, including 1.5 - 26.4 MeV γ sources with peak brilliance up to 1 · 1028ph/(s · mm2 • mrad2 • 0.1%bw), are reported.
Wakefield Excitation and Particle Dynamics
icon_mobile_dropdown
Dynamics of boundary layer electrons in laser driven wakefields (Conference Presentation)
Min Chen
The dynamics of electrons forming the boundary layer of a highly nonlinear laser wakefield is investigated using computational simulations. It is shown that when the driver pulse intensity increases or the focal spot size decreases, a significant amount of electrons initially pushed by the laser pulse can detach from the bubble structure at its tail, middle, or front and form particular classes of waves locally with high densities, referred to as the tail wave, lateral wave, and bow wave. Simulation results show that the tail and bow waves correspond to real electron trajectories, while the lateral wave does not. The detached electrons can be ejected transversely, containing considerable energy, and reducing the efficiency of the laser wakefield accelerator. Some of the transversely emitted electrons may obtain MeV level energy. These electrons can be used for wake evolution diagnosis and producing high frequency radiation.
Short energetic electron bunches from laser wakefield accelerator with orthogonally polarized perpendicularly crossed laser pulses
Vojtěch Horný, Václav Petržílka, Ondřej Klimo, et al.
Electron acceleration with optical injection by a perpendicularly propagating and orthogonally polarized low intensity laser pulse into a nonlinear plasma wave driven by a short intense laser pulse was explored by particle- in-cell simulations. The scheme presented here provides an energetic electron bunch in the first ion cavity with a low energy spread. The electron bunch short and compact, with the mean energy about 400 MeV and a low energy spread about 10 MeV in time of 6 ps of acceleration. The injected charge is several tens of pC for the low intensity of the injection pulse. Initial positions of electrons forming the energetic bunch are shown and then these electrons are followed during the simulation in order to understand the injection process and determine electron bunch properties.
Poster Session
icon_mobile_dropdown
X-ray phase contrast imaging of biological samples using a betatron x-ray source generated in a laser wakefield accelerator
U. Chaulagain, K. Bohacek, M. Kozlova, et al.
In a plasma wakefield accelerator, an intense laser pulse propagates in an under-dense plasma that drives a relativistic plasma wave in which electrons can be injected and accelerated to relativistic energies within a short distance. These accelerated electrons undergo betatron oscillation and emit a collimated X-ray beam along the direction of electron velocity. This X-ray source is characterised with a source size of the order of a micrometer, a pulse duration of the order of femtosecond, and with a high spectral brightness. This novel X-ray source provides an excellent imaging tool to achieve unprecedented high-resolution image through phase contrast imaging. The phase contrast technique has the potential to reveal structures which are invisible with the conventional absorption imaging. In the X-ray phase contrast imaging, the image contrast is obtained thanks to phase shifts induced on the X-rays passing through the sample. It involves the real part of refractive index of the object. Here we present high-resolution phase contrast X-ray images of two biological samples using laser-driven Betatron X-ray source.
Requirements on the LWFA electron beam for the user-oriented photon source
Alexander Molodozhentsev, Lukáš Přibyl, Georg Korn, et al.
The laser-driven Undulator X-ray source (LUX) is designed to be a user beamline providing ultra-short EUV photon pulses with a central wavelength tuneable in the range of 0.4 to 4.5 nm and a peak brilliance of up to 1021 photons/(s.mrad2.mm2.0.1% B.W.), which makes this source comparable with modern synchrotron sources. The source shall provide a focal spot size well below 10 μm and a range of auxiliary beams for complex pump-and-probe experiments and it is also an important experimental milestone towards a future laser driven Free Electron Laser. Unique femtosecond nature of the laser-plasma electron acceleration in combination with extremely small transverse emittance of the electron beam is the major advantage of the LWFA technique. Preservation of the electron beam quality is a complicated task for a dedicated electron beam line, which has to be designed to transport the electron beam from the LWFA source up to the undulator. In this report we discuss main requirements on the LWFA source and the electron beam optics of the LUX source and solutions to produce required quality photon beam in the undulator and we also discuss the effect of realistic setup parameters on the quality of the electron beam in the undulator within the range of systematic errors.
Concerted manipulation of laser plasma dynamics with two laser pulses
J. Braenzel, A. A. Andreev, L. Ehrentraut, et al.
In this article we present experimental results from a counter-propagating two laser pulse experiment at high intensity and using ultrathin gold and plastic foil targets. We applied one laser pulse as a pre-pulse with an intensity of up to 1x1018 W/cm2. By this method we manipulated the pre-plasma of the foil target with which the stronger laser pulse with an intensity of 6x1019W/cm2 interacts. This alters significantly subsequent processes from the laser plasma interaction which we show the ion acceleration and high harmonic generation. On the one hand, the maximum kinetic ion energy and the maximum charge state for gold ions decline due to the pre-heating of the target in the time range of few ps, on the other hand the number of accelerated ions is increased. For the same parameter range we detected a significant raise of the high harmonic emission. Moreover, we present first experimental observations, that when the second laser pulse is applied as a counter-propagating post-pulse the energy distribution of accelerated carbon ions is charge selective altered. Our findings indicate that using this method a parametric optimization can be achieved, which promises new insights about the concurrent processes of the laser plasma dynamics.
Heavy ion acceleration by 10TW Ti:sapphire laser system at PALS
Petr Zakopal, Miroslav Krůs, Michaela Kozlová
Laser-driven heavy-ion accelerator represents a possible compact table-top device with a potential to applications, in particular, ion implantation of PN junctions in semiconductors. We present generation of heavy ion beams, Ti and Fe with an energy of 210 keV and 440 keV, respectively. Such beams were accelerated from a front size of thick foils by p-polarized 600mJ, 50fs laser pulse. Ion energies were measured by time-of-flight spectrometers. Shot-to-shot stability of obtained energies was better than 30%.