Proceedings Volume 10193

Ultrafast Bandgap Photonics II

cover
Proceedings Volume 10193

Ultrafast Bandgap Photonics II

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 22 June 2017
Contents: 14 Sessions, 22 Papers, 32 Presentations
Conference: SPIE Defense + Security 2017
Volume Number: 10193

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10193
  • Ultrafast Dynamics and Metastability of Transient States
  • Ultrafast Nonlinear Spectroscopy
  • Ultrafast Spectroscopy of Carrier Dynamics I
  • Ultrafast Spectroscopy of Carrier Dynamics II
  • Ultrafast Photonic Device Application
  • Ultrafast Quantum Phenomena
  • Ultrafast Laser Atmosphere Effects
  • Ultrafast Interaction with Bandgap Material
  • Ultrafast Extreme Lasers
  • Ultrafast Mid-IR Lasers
  • Ultrafast Imaging and Material Characterization
  • Entangled Photons and Non Classical Light
  • Entanglement and Quantum Walks
Front Matter: Volume 10193
icon_mobile_dropdown
Front Matter: Volume 10193
This PDF file contains the front matter associated with SPIE Proceedings Volume 10193, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Ultrafast Dynamics and Metastability of Transient States
icon_mobile_dropdown
Metastability of transient states
High intensity ultrashort pulse causes dramatic perturbations in electronic structure of condensed matter. In the same time energy in high intensity single pulse may not be sufficient to disrupt sample thermal equilibrium. Interesting experimental results in ultrashort pulse photo-excited solids have been reported recently on transient athermal phenomena induced by ultrashort high intensity low energy pulse – phenomena related to both athermal phase transitions and athermal state changes. Athermal non-equilibrium of electronic system – and induced changes in magnetic and optical states, may exist only for a period of time comparable to excited carriers’ relaxation time. That time is not sufficient for emerging application ranging from light induced superconductivity to infrared countermeasures. While single pulse interaction with condensed matter leading to transit state appearance is well observed, documented, and, to some extends, explained, one of the major problem is to maintain meta-stability of such transient states. Metastability of athermal non-equilibrium that could last well beyond electronic system relaxation time. The objective of this paper is to discuss some issues and approaches to meta-stability of transient states induced by ultrashort pulses in condensed matter.
Relaxation of nonequilibrium populations after a pump: the breaking of Mathiessen's rule
J. K. Freericks, O. Abdurazakov, A. F. Kemper
From the early days of many-body physics, it was realized that the self-energy governs the relaxation or lifetime of the retarded Green’s function. So it seems reasonable to directly extend those results into the nonequilibrium domain. But experiments and calculations of the response of quantum materials to a pump show that the relationship between the relaxation and the self-energy only holds in special cases. Experimentally, the decay time for a population to relax back to equilibrium and the linewidth measured in a linear-response angle-resolved photoemission spectroscopy differ by large amounts. Theoretically, aside from the weak-coupling regime where the relationship holds, one also finds deviations and additionally one sees violations of Mathiessen’s rule. In this work, we examine whether looking at an effective transport relaxation time helps to analyze the decay times of excited populations as they relax back to equilibrium. We conclude that it may do a little better, but it has a fitting parameter for the overall scale which must be determined.
Ab-initio calculations for energy transfer from ultrashort laser pulse to dielectrics (Conference Presentation)
Ab-initio density functional theory (DFT) has been successful for calculations of ground state properties of various materials. Time-dependent density functional theory (TDDFT) is an extension of the DFT and can describe electron dynamics in molecules, nano-structures, and solids induced by optical electric fields. We have been developing a computational method to describe electron dynamics in a crystalline solid under an irradiation of an ultrashort laser pulse, solving the time-dependent Kohn-Sham equation in real time. The method can be used for an ab-initio description of light-matter interactions. We further couple the electron dynamics calculation with the macroscopic Maxwell equations in a multiscale implementation. It can describe laser pulse propagation in dielectrics and, in particular,the energy transfer from the laser pulse to electrons in dielectrics without any empirical parameters. We apply the method to analyze recent experiments utilizing attosecond spectroscopy methods. We show a few examples. One is for the ultrafast changes of dielectric properties of diamond during the irradiation of an intense few-cycle laser pulse. We mimic the pump-probe measurement employing the multiscale Maxwell + TDDFT simulation. We clarified that the dynamical Franz-Keldysh effect is responsible for the mechanism. The other is to identify the onset of the energy transfer from the laser pulse to SiO_2 when we increase the intensity of the laser pulse. We are currently extending the analysis to obtain a clear and intuitive understanding for the initial stage of laser damage processes.
Ultrafast Nonlinear Spectroscopy
icon_mobile_dropdown
Nondegenerate nonlinear refraction, absorption, and gain in semiconductors (Conference Presentation)
David J. Hagan, Matthew C. Reichert, Peng Zhao, et al.
We have shown both experimentally and theoretically that the effect of intermediate-state resonance enhancement causes highly nondegenerate 2-photon absorption, 2PA, to be strongly enhanced in direct-gap semiconductors. Calculations indicate an additional 10x increase in this enhancement is possible for quantum-well semiconductors. This enhancement leads to interesting applications of 2PA, such as mid-infrared detection, where uncooled, large-gap photodiodes can rival the sensitivity of cooled MCT detectors (for short pulses). Additionally, mid-IR imaging and tomography based on this effect have been shown. Even larger enhancement of 3PA is calculated and observed. In the case of optically-pumped semiconductors, we have now demonstrated that the complementary process of nondegenerate 2-photon stimulated emission can be observed. Theoretically, this results in 2-photon gain (2PG) that is enhanced as much as 2PA, leading to the possibility of large gap devices with tunable mid-infrared gain. However, the effect of nondegenerate enhancement of 3PA can be detrimental to the observation of this gain. Additionally, by causality, Kramers-Kronig relations predict that the enhancement of 2PA is accompanied by an enhancement of the nonlinear refractive index, n2, which is very highly dispersive in the region of 2PA. Our latest experimental results confirm this enhancement and strong dispersion.
Radiation effects testing via semiconductor nonlinear optics: successes and challenges
Dale McMorrow, Joel M. Hales, Ani Khachatrian, et al.
Single-event effects (SEEs) refer to phenomena that arise from the interaction of single energetic particles with microelectronic devices, as is experienced in harsh radiation environments. Carrier generation induced by two-photon absorption (TPA) has become a valuable tool for SEE investigations of microelectronic structures owing to its unique ability to inject carriers through the wafer, directly into well-defined locations in complex circuits. Recent effort has focused on putting the TPA SEE technique on a more quantitative basis. This paper addresses the recent successes in achieving this goal, as well as the challenges that are faced moving forward.
Ultrafast photoconductive devices based upon GaAs:ErAs nanoparticle composite driven at 1550 nm
W-D. Zhang, A. Mingardi, E. R. Brown, et al.
This paper reports progress on a type of ultrafast photoconductive source that can be driven at 1550 nm but exhibits the robustness of GaAs (e.g., low-temperature-grown GaAs) driven at 780 nm. The approach is GaAs doped heavily with Er (≈4x1020 cm-3 or 2% atomic-Er-to-Ga fraction) such that ErAs nanoparticles form spontaneously during epitaxial growth by MBE. The nanoparticles are mostly spherical with a diameter of a few nm while the packing density is estimated as high as ~2.2x1019/cm3. Yet, the Er-doped GaAs epilayer maintains excellent structural quality and smooth surface morphology. A photoconductive switch coupled to a 4-turn square spiral antenna is fabricated and characterized. At least ~40 μW average THz power is generated when the device is biased at 75 V and pumped with a 1550-nm 90-fs-short pulsed laser having average power ~85 mW. This research is significant for 1550-nm-technologycompatible, cost-effective THz sources.
Ultrafast Spectroscopy of Carrier Dynamics I
icon_mobile_dropdown
Carrier multiplication and charge transport in artificial quantum-dot solids probed by ultrafast photocurrent spectroscopy (Conference Presentation)
Understanding and controlling carrier transport and recombination dynamics in colloidal quantum dot films is key to their application in electronic and optoelectronic devices. Towards this end, we have conducted transient photocurrent measurements to monitor transport through quantum confined band edge states in lead selenide quantum dots films as a function of pump fluence, temperature, electrical bias, and surface treatment. Room temperature dynamics reveal two distinct timescales of intra-dot geminate processes followed by non-geminate inter-dot processes. The non-geminate kinetics is well described by the recombination of holes with photoinjected and pre-existing electrons residing in mid-gap states. We find the mobility of the quantum-confined states shows no temperature dependence down to 6 K, indicating a tunneling mechanism of early time photoconductance. We present evidence of the importance of the exciton fine structure in controlling the low temperature photoconductance, whereby the nanoscale enhanced exchange interaction between electrons and holes in quantum dots introduces a barrier to charge separation. Finally, side-by-side comparison of photocurrent transients using excitation with low- and high-photon energies (1.5 vs. 3.0 eV) reveals clear signatures of carrier multiplication (CM), that is, generation of multiple excitons by single photons. Based on photocurrent measurements of quantum dot solids and optical measurements of solution based samples, we conclude that the CM efficiency is unaffected by strong inter-dot coupling. Therefore, the results of previous numerous spectroscopic CM studies conducted on dilute quantum dot suspensions should, in principle, be reproducible in electronically coupled QD films used in devices.
Probing semiconductor interfacial carrier dynamics through time-resolving the photo-induced electric fields (Conference Presentation)
Matthew C. Beard, Ye Yang
Isolating spectral signatures and/or the carrier dynamics that are specific to semiconductor junctions and not just the interface or bulk is challenging. Junctions that form between a semiconductor surface and a contacting layer are the key to their function. Equilibration of chemical potential at such junctions creates an internal electric field and establishes a region where mobile charges are driven away (depletion region). Absorption of light produces electrons and holes within the depletion region where the charges are separated. We developed transient photoreflectance (TPR) as an innovative time-resolved spectroscopic probe that can directly monitor carrier dynamics within and across such junctions. In the TPR method, the change in reflectance (ΔR) of a broadband probe from a specific interface is monitored as a function of pump-probe delay. The spectral nature of the reflected beam provides quantitative information about the built-in field; thus, TPR is a non-contact probe of the electric field at that interface. We applied TPR to study charge transfer at p-type gallium-indium phosphide (p-GaInP2) and n-type gallium-arsenide (n-GaAs) interfaces. We monitored the formation and decay of transient electric fields that form upon photoexcitation within bare p-GaInP2, p-GaInP2/platinum (Pt), and p-GaInP2/amorphous titania (TiO2) interfaces. A field at both the p-GaInP2/Pt and p-GaInP2/TiO2 interfaces forms that drives charge separation, however, recombination at the p-GaInP2/TiO2 interface is significantly reduced compared the p-GaInP2/Pt interface. On the other hand, n-GaAs forms an ohmic contact with TiO2 while only a small field forms at the n- GaAs/NiO interface that promotes hole transfer to nickel oxide (NiO).
Ultrafast Spectroscopy of Carrier Dynamics II
icon_mobile_dropdown
Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production
Nicole M. B. Cogan, Cunming Liu, Fen Qiu, et al.
Artificial conversion of sunlight to chemical fuels has attracted attention for several decades as a potential source of clean, renewable energy. We recently found that CdSe quantum dots (QDs) and simple aqueous Ni2+ salts in the presence of a sacrificial electron donor form a highly efficient, active, and robust system for photochemical reduction of protons to molecular hydrogen. Ultrafast transient absorption spectroscopy studies of electron transfer (ET) processes from the QDs to the Ni catalysts reveal extremely fast ET, and provide a fundamental explanation for the exceptional photocatalytic H2 activity. Additionally, by studying H2 production of the Ni catalyst with CdSe/CdS nanoparticles of various structures, it was determined that surface charge density plays an important role in charge transfer and ultimately H2 production activity.
Modeling and spectroscopy of carrier relaxation in semiconductor optoelectronics
A. C. Scofield, A. I. Hudson, B. L. Liang, et al.
The end performance of semiconductor optoelectronic devices is largely determined by the carrier dynamics of the constituent base materials. When combined with full-scale numerical models, optical spectroscopy is capable of providing detailed information about carrier generation and dynamics that is essential to accurate analysis of empirical test structure studies, and to translating those results into predictions for device performance. We have applied time-resolved and steady-state luminescence techniques to a variety of III-V materials and reference structures in order to investigate the mechanisms controlling carrier dynamics and to develop diagnostic tools to provide actionable feedback to R and D efforts for improvement and optimization of material/device performance.
Ultrafast Photonic Device Application
icon_mobile_dropdown
Axial InGaAs/GaAs nanowire separate absorption-multiplication avalanche photodetectors (Conference Presentation)
Diana L. Huffaker, Alan C. Farrell, Xiao Meng
In0.53Ga0.47As/InP single photon avalanche detectors (SPADs) have a high photon detection efficiency in the near-IR, however the dark count rate is prohibitively high at room temperature. A nanowire-based In0.3Ga0.7As/GaAs SPAD can significantly reduce the DCR through a nearly three order of magnitude reduction in bulk InGaAs volume, as well as by reducing the indium composition for operation at 1064 nm. As a first step, we have successfully grown axial InGaAs/GaAs heterostructures using catalyst-free selective-area epitaxy. We will present the electrical characterization of a vertically oriented nanowire array InGaAs/GaAs SPADs operating at 1064 nm and use 3-dimensional modeling to aid in the analysis.
Toward high fidelity spectral sensing and RF signal processing in silicon photonic and nano-opto-mechanical platforms
Aleem Siddiqui, Charles Reinke, Heedeuk Shin, et al.
The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.
Ultrafast Quantum Phenomena
icon_mobile_dropdown
Optical control of polaritons: from optoelectronic to spinoptronic device concepts
Exciton-polaritons in semiconductor microcavities have been studied intensely, both with respect to their intriguing fundamental physical properties and with respect to their potential in novel device designs. The latter requires ways to control polaritonic systems, and all-optical control mechanisms are considered to be especially useful. In this talk, we discuss and review our efforts to control the polariton density, utilizing optical four-wave mixing instabilites, and the spin or polarization textures resulting from the optical spin Hall effect. Both effects are readily observable in the cavity’s far-field emission, and hence potentially useful for optoelectronic and spinoptronic device applications.
Chirped soliton: new type of solitons for photonics
Vyacheslav A. Trofimov, Tatiana M. Lysak, Irina G. Zakharova
We investigate a novel type of solitons - chirped solitons- in the various problems of photonics which deals with the femtosecond laser pulse propagation in the media with nonlinear non-stationary absorption. This type of solitons is characterized by the complicated pulse chirp and allows self-similar propagation of laser radiation at the distances up to several dispersion lengths. In our analytical considerations, we develop approximate formulas which describe the nonlinear chip and the soliton shape. We confirm our analytical results by the numerical simulation of the considered problems: femtosecond laser pulse propagation in the media with nanorods or in the fused silica with taking into account non-stationary multi-photon absorption, nonlinear refraction, nanorods melting.
The bulk photovoltaic effect as a platform for ultrafast, nanoscale photosensitive devices
Steve Young
The bulk photovoltaic effect refers to the generation of photocurrents and photovoltages in bulk single-phase materials. It requires only that the material possess broken inversion symmetry, and occurs due a unique mechanism known as "shift current." Discovered over a half-century ago, it received little attention decades due to extremely poor observed efficiency. However, in recent years, it has been both theoretically and experimentally investigated in a variety of new systems and materials, and significant improvements in performance have been achieved. In this talk, I will provide a brief overview of the physics of the bulk photovoltaic effect and survey the experimental and theoretical advances that have been made in its understanding and optimization. I will cover in detail the unique properties of the bulk photovoltaic effect that distinguish it from conventional photovoltaic effects, including photovoltages substantially exceeding the material's band gap, response amplitudes and directions that can depend on both photon energy and polarization, and response that occurs on ultrafast timescales. Finally, I will explore the potential for these features to enable novel and improved photosensitive devices, especially in combination with other functional materials.
Towards exploitation of singlet-exciton fission in organic crystals and potential integration with inorganic semiconductors
Kolja K. Kolata, Tobias Breuer, Gregor Witte, et al.
Molecular semiconductors offer intriguing electronic properties. In particular, singlet-exciton fission, the nonradiative decay of one singlet exciton into two triplet excitons effectively doubles the amount of carriers available for, e.g., photovoltaic current generation, thereby effectively surpassing the Shockley-Queisser-limit. An efficient use of singletexciton fission in actual devices, however, requires a detailed understanding of the decay dynamics in donor-acceptor heterostructures. We present a quantitative study on model single-crystalline perfluropentacene at cryogenic temperature and related heterostructures to reveal the intricate interplay between singlet-exciton fission and the nanoscopic molecular arrangement, the role of charge-transfer into and out of molecular systems and discuss the potential for functionalizing inorganic semiconductors. Finally, the potential implications in heterosystems and for functionalization of inorganic semiconductor devices are discussed.
Ultrafast Laser Atmosphere Effects
icon_mobile_dropdown
Long range robust multi-terawatt MWIR and LWIR atmospheric light bullets
There is a strong push worldwide to develop multi-Joule femtosecond duration laser pulses at wavelengths around 3.5-4 and 9-11μm within important atmospheric transmission windows. We have shown that pulses with a 4 μm central wavelength are capable of delivering multi-TW powers at km range. This is in stark contrast to pulses at near-IR wavelengths which break up into hundreds of filaments with each carrying around 5 GW of power per filament over meter distances. We will show that nonlinear envelope propagators fail to capture the true physics. Instead a new optical carrier shock singularity emerges that can act to limit peak intensities below the ionization threshold leading to low loss long range propagation. At LWIR wavelengths many-body correlations of weakly-ionized electrons further suppress the Kerr focusing nonlinearity around 10μm and enable whole beam self-trapping without filaments.
Nonlinear guiding of picosecond CO2 laser pulses in atmosphere (Conference Presentation)
During the last 20 years much attention has been given to the study of propagation of short intense laser pulses for which the peak power exceeds the critical power of self-focusing, Pcr. For a laser power P < Pcr, a dynamic equilibrium between the Kerr self-focusing, diffraction and defocusing caused by laser-ionized plasma result in the production of a high intensity laser filament in air within which a variety of nonlinear optical phenomena are observed. However, research in the 0.8-1 m range so far has shown a fundamental limitation of guided energy to a few mJ transported within an ~100 m single channel. A long-wavelength, 0~10 m CO2 laser is a promising candidate for nonlinear guiding because expected high Pcr values according to the modeling should allow for the increase of energy (and therefore power) in a self-guided beam from mJ (GW) to few Joules (TW). During the last decade a significant progress has been achieved in amplification of picosecond pulses to terawatt and recently to <10 TW power level at UCLA and ATF BNL. Such powerful 10 m lasers open possibility for nonlinear propagation studies in an atmospheric window with high transmission. As a natural first step in a our program on picosecond CO2 laser filamentation, we have made first measurements of Kerr coefficients of air and air constituents around 10 m. We also undertook direct measurements of n2 of air by analyzing nonlinear self-focusing in air using a ~3 ps, 600 GW pulses of the BNL CO2 laser.
Air lasing through femtosecond filamentation (Conference Presentation)
Air lasing is a concept that is based on the utilization of the constituents of air as a gain medium in a standoff, impulsive, laser-like optical source. While both forward-propagating and backward-propagating laser emissions could be generated, the backward-propagating emission is of the most practical significance for its potential to enable single-ended remote sensing schemes. I will review recent results on air lasing from singly ionized nitrogen molecular ions N2+, pumped through femtosecond laser filamentation in air. So far, lasing has been demonstrated only in the forward direction, and the mechanisms that enable population inversion have been highly controversial.
Ultrafast Interaction with Bandgap Material
icon_mobile_dropdown
Interaction of ultrashort laser pulses with epsilon-near-zero materials (Conference Presentation)
Abstract: The nonlinear optical response of a material is conventionally assumed to be very much smaller than its linear response. Here we report that the nonlinear contribution to the refractive index of a sample of indium-tin oxide can be much larger than the linear contribution when the optical wavelength is close to the material’s bulk plasma wavelength, where the material exhibits epsilon-near-zero behavior. In particular, we demonstrate that a change in refractive index as large as 0.7 can be obtained in an ultra-thin indium-tin oxide film using an optical intensity of 140 GW/cm2. Nonlinear optical phenomena result from the light-induced modification of the optical properties of a material lead to a broad range of applications, including microscopy, all-optical data processing, and quantum information. However, nonlinear (NL) effects are typically extremely weak. The size of nonlinear effects is typically limited by the largest intensity that can be used without permanently damaging of the material. Consequently, the resulting change in refractive index is typically of the order of 0.001 or smaller. A long-standing goal of nonlinear optics (NLO) has been the development of materials that can display a light-induced change in the refractive index of the order of unity. Such materials would lead to exciting new applications of NLO. Indeed, much effort in the fields of plasmonics and metamaterials is devoted to the development of such materials. Furthermore, it has been suggested that materials with vanishing permittivity, commonly known as epsilon-nearzero (ENZ) materials, can be used to induce highly nonlinear phenomena and unusual phase-matching behavior. In this work, we describe our studies of indium-tin oxide (ITO) at its ENZ wavelength, and we demonstrate a refractive index change of 0.7. Materials possessing free charges, such as metals and doped semiconductors, exhibit a vanishing permittivity at the bulk plasmon wavelength. The zero-permittivity wavelength in doped semiconductors typically lies at infrared wavelengths and can be fine tuned by controlling the level of doping. Here we study the case of an ultra-thin layer of ITO exhibiting ENZ behavior at wavelengths around 1.24 µm. We show that in this spectral region the nonlinear response (intensity-dependent change in refractive index, Δn) is enhanced approximately 2000-fold with respect to that observed at shorter wavelengths and that a Δn of the order of unity can be observed.
Ultrafast Extreme Lasers
icon_mobile_dropdown
Far above bandgap photonics: attosecond dynamics of highly excited electrons in materials
Cong Chen, Zhensheng Tao, Adra Carr, et al.
Tabletop-scale coherent EUV generated through high-harmonic generation (HHG) produces light in the form of an attosecond pulse train that uniquely combines characteristics of good energy resolution (≈100-300meV) with sub-fs time resolution. This makes HHG an ideal source for studying the fastest dynamics in materials. Furthermore, using angle-resolved photoemission spectroscopy (ARPES), it is possible to extract detailed information about electron dynamics over the entire Brillouin zone. In recently published work, we combined HHG with ARPES to identify a sub-femtosecond excited-state lifetime for the first time. Photoemission occurs as a three-step process: 1) An electron is photoexcited from the valence band to far above the Fermi energy; 2) it transports to the surface, and 3) it overcomes the work function and exits. If the electron is promoted into a highlyexcited unoccupied band in the material (as opposed to a free-electron-like state), we observe the electron emission lifetime to increase in a measurable way—the Ni band 22 eV above the Fermi level has a lifetime of 212±30 attoseconds. Furthermore, by comparing photoemission from Cu and Ni, we reveal the influence of attosecond-timescale electron screening vs scattering by the electrons near the fermi surface. This work for the first time demonstrates the relevance of attosecond spectroscopy to the study of intrinsic properties and band structure in materials, as opposed to the strong-field induced dynamics studied extensively to-date.
Generation and application of bright coherent extreme ultraviolet radiation
Lap Van Dao, Khuong Ba Dinh, Khoa Anh Tran, et al.
We study the use of a second driving beam to enhance the phase matching and also to create wave mixing and parametric amplification in extreme ultraviolet region. New methods for studying coherent processes in atoms and molecules and for imaging with high spatial resolution have been proposed and developed
Ultrafast Mid-IR Lasers
icon_mobile_dropdown
Fiber sources of femtosecond pulses in the mid-infrared (Conference Presentation)
There is currently broad interest in sources of ultrashort pulses at mid-infrared (3-5 micron) and even long-wave infrared wavelengths. Fiber-based sources of ultrashort pulses potentially offer some performance advantages along with major practical advantages, but also face major challenges. The development of optical fibers that transmit in the mid- and long-wave-infrared enables the design of short-pulse sources at these wavelengths. This talk will focus on sources of coherent femtosecond pulses. The first fiber lasers that directly emit ultrashort pulses around 3 micron wavelength will be reviewed, along with an approach to tunable femtosecond pulses in the 3-6 micron region based on Raman frequency shifting. Thoughts on how to extend the performance to higher energies, broader wavelength coverage, and greater integration will be offered.
Progress in Cr and Fe doped ZnS/Se mid-IR CW and femtosecond lasers
This paper summarizes recent improvements of output characteristics of polycrystalline Cr:ZnS/Se master oscillators in Kerr-Lens-Mode-Locked regime. We developed a flexible design of femtosecond polycrystalline Cr:ZnS and Cr:ZnSe lasers and amplifiers in the spectral range 2–3 μm. We obtained few-optical-cycle pulses with multi-Watt average power in very broad range of repetition rates 0.08–1.2 GHz. We also report on efficient nonlinear frequency conversion directly in the polycrystalline gain elements of ultra-fast lasers and amplifiers. In this work we also report on recent progress in spinning ring gain element technology and report to the best of our knowledge the highest output power of 9.2 W Fe:ZnSe laser operating in CW regime at 4150nm.
Ultrafast Imaging and Material Characterization
icon_mobile_dropdown
Ultrafast microscopy captures the dynamics of bound excitons in twisted bilayer van der Waals materials
Hiral Patel, Kyle T. Vogt, Lujie Huang, et al.
Stacking and twisting 2D van der Walls (vdW) materials can create unique electronic properties that are not accessible in a single sheet of material. When two sheets of van der Waals material such as graphene are stacked in an off-axis angle, in a twisted bilayer graphene (tBLG) configuration, electronic properties are modified from interlayer orbital hybridization effects. For instance, in tBLG we can access both massless and massive chiral quasiparticles characteristics of graphene and bilayer graphene, as well as angle tunable optical resonances that are not present in graphene or bilayer graphene. In addition, first principle simulation predicts that upon optical resonant excitation of tBLG, bound exciton formation is a possibility due to cancelation of exciton-continuum coupling from anti-symmetric superposition of degenerate resonant transitions. In order to study possible bound exciton formation, we map out the electronic structure of single grain tBLG using multi-photon transient absorption microscopy. Surprisingly, upon resonant optical excitations, tBLG shows enhanced transient response with longer carrier compared to AB stacked bilayer graphene. Further, we find that the origin of this unexpected optical response can be best explained by the presence of a lower lying bound exciton state predicted by recent theoretical simulations. This suggests that tBLG is a novel 2D hybrid material that enables the creation of both strongly-bound excitons along-side highly-conductive continuum states. Recently, the family of 2D vdW materials has grown appreciably. As such, there are countless possibilities for stacking and twisting 2D vDw materials to produce similar interlayer electronic states for next generation optoelectronics.
Transient absorption imaging of carrier dynamics in disordered semiconductors
Andrew H. Hill, Kori E. Smyser, Casey L. Kennedy, et al.
To unravel the impact of defects in the local charge carrier dynamics of lead-halide perovskite thin films, we employ transient absorption microscopy, which couples ultrafast temporal resolution with ~200 nm spatial resolution, to locally interrogate charge carrier cooling, transport, and recombination in individual domains. Ultrafast imaging of charge carrier diffusion shows significant domain-to-domain variation in carrier mobility within a single thin film. Direct correlation of these spectroscopic measurements to scanning electron microscopies reveals a strong dependence on domain size and quality. We also examine the effects of surface states and carrier density on the effective mobility and discuss implications for photovoltaics and other optoelectronic devices.
Harnessing optical loss for unique microlaser functionality (Conference Presentation)
Lasers, as the key driving force in the field of optics and photonics over other photonic components, are now being significantly benefited from the studies of nanophotonics and metamaterials, broadening laser physics and device applications. The properties of light are much more beyond its simple intensity and temporal characteristics. The fruitful nature of light provides a great variety of freedoms in manipulating light for modern photonic applications, including spin (polarization), chirality, angular momentum, and spin-orbit coupling. Unfortunately, all these fundamental properties and functionalities of light have not been fully exploited in micro/nano-laser systems because the conventional principles of laser design in bulk optics cannot be easily scaled down to the micro/nano scale. The capability of creating microlasers with controlled spin/orbital information and chirality in their radiations is expected to revolutionize next generation of photonic systems for computing and communication. In this talk, I will focus on our recent effort in harnessing optical losses for unique microlaser functionalities, in particular, an orbital angular momentum (OAM) microlaser that structure and twist the lasing radiation at the microscale. The effective generation of OAM lasing, especially at a micro/nano-scale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode and its polarization state. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications.
Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Entangled Photons and Non Classical Light
icon_mobile_dropdown
Photonic quantum computing (Conference Presentation)
Of the various approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation at the single photon level; while the challenge of entangling interactions between photons can be met via measurement induced non-linearities. However, the real excitement with this architecture is the promise of ultimate manufacturability: All of the components---inc. sources, detectors, filters, switches, delay lines---have been implemented on chip, and increasingly sophisticated integration of these components is being achieved. We will discuss the opportunities and challenges of a fully integrated photonic quantum computer.
Quantum nanophotonics (Conference Presentation)
Nanophotonic structures that localize photons in sub-wavelength volumes are possible today thanks to modern nanofabrication and optical design techniques. Such structures enable studies of new regimes of light-matter interaction, quantum and nonlinear optics, and new applications in computing, communications, and sensing. The traditional quantum nanophotonics platform is based on InAs quantum dots inside GaAs photonic crystal cavities. Recently, alternative material systems have emerged, such as color centers in diamond and silicon carbide, that could potentially bring the described experiments to room temperature and facilitate scaling to large networks of resonators and emitters. Finally, the use of inverse design nanophotonic methods, that can efficiently perform physics-guided search through the full parameter space, leads to optical devices with properties superior to state of the art, including smaller footprints, better field localization, and novel functionalities.
Large-scale frequency- and time-domain quantum entanglement over the optical frequency comb (Conference Presentation)
When it comes to practical quantum computing, the two main challenges are circumventing decoherence (devastating quantum errors due to interactions with the environmental bath) and achieving scalability (as many qubits as needed for a real-life, game-changing computation). We show that using, in lieu of qubits, the "qumodes" represented by the resonant fields of the quantum optical frequency comb of an optical parametric oscillator allows one to create bona fide, large scale quantum computing processors, pre-entangled in a cluster state. We detail our recent demonstration of 60-qumode entanglement (out of an estimated 3000) and present an extension to combining this frequency-tagged with time-tagged entanglement, in order to generate an arbitrarily large, universal quantum computing processor.
Deterministic generation of entangled photonic cluster state from interacting solid state emitters (Conference Presentation)
Mercedes Gimeno-Segovia, Sophia Economou, Terry Rudolph
Photons are excellent carriers of quantum information; their polarization remains coherent for long times and it is easy to measure and precisely rotate. The fundamental hurdle with photon-based quantum information processing is the lack of direct photon-photon interactions to provide entanglement between pairs of photons. Recent proposals show the ability to build large cluster states from small entangled states using non-deterministic operations, but the generation of deterministic high-fidelity small entangled states remains a challenge. In this talk, we will show how the necessary cluster-state building blocks for large-scale quantum computation can be created from coupled solid-state quantum emitters without the need for any two-qubit gates and regardless of whether the emitters are identical. We provide a recipe for the generation of two-dimensional, ‘cluster-state’ entangled photons that can be carried out with existing experimental capabilities.
Quantum imaging and spatial entanglement characterization with an EMCCD camera
Matthew Reichert, Hugo Defienne, Xiaohang Sun, et al.
We utilize a single-photon sensitive electron multiplying CCD camera as a massively parallel coincidence counting apparatus to study spatial entanglement of photon pairs. This allows rapid measurement of transverse spatial entanglement in a fraction of the time required with traditional point-scanning techniques. We apply this technique to quantum experiments on entangled photon pairs: characterization of the evolution of entanglement upon propagation, and measurement of one- and two-photon portions of the state transmitted through non-unitary (lossy) objects, and quantum phase imaging.
Entanglement and Quantum Walks
icon_mobile_dropdown
Superdense coding facilitated by hyper-entanglement and quantum networks
James F. Smith III
A method of generating superdense coding based on quantum hyper-entanglement and facilitated by quantum networks is discussed. Superdense coding refers to the coding of more than one classical bit into each qubit. Quantum hyperentanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, and orbital angular momentum (OAM). The new superdense coding scheme permits 2L bits to be encoded into each qubit where L is the number of degrees of freedom used for quantum hyper-entanglement. The superdense coding procedure is based on a generalization of the Bell state for L degrees of freedom. Theory describing the structure, generation/transmission, and detection of the generalized Bell state is developed. Circuit models are provided describing the generation/transmission process and detection process. Detection processes are represented mathematically as projection operators. A mathematical proof that that the detection scheme permits the generalized Bell states to be distinguished with 100% probability is provided. Measures of effectiveness (MOEs) are derived for the superdense coding scheme based on open systems theory represented in terms of density operators. Noise and loss related to generation/transmission, detection and propagation are included. The MOEs include various probabilities, quantum Chernoff bound, a measure of the number of message photons that must be transmitted to successfully send and receive a message, SNR and the quantum Cramer Rao’ lower bound. Quantum networks with quantum memory are used to increase the efficiency of the superdense coding scheme.
Multi-frequency entanglement router system
A high performance free-space Wavelength Division Multiplexed (WDM) transceiver system is assessed as to its viability for routing collinear entangled photons in place of the classical optical signals for which it was designed. Explicit calculations demonstrate that entanglement in the input state is retained through transit of the system without intrinsic loss. Introducing spatial degrees of freedom changed the entanglement so that it could be manifested at remote locations, as required in non-local Bell test measurements or Quantum Key Distribution (QKD) Protocols. It was also found that by adding proper components, the exit state could be changed from being frequency entangled to polarization entangled, with respect to the (remote) paths of the photons. Finally it was found possible to route a complete entangled state to either of the two remote users by proper selection of the discrete frequencies in the input state. Each entanglement in the photon states was maximal, hence suited for Quantum Information Processing (QIP) applications.
Continuous-time limit of topological quantum walks
Radhakrishnan Balu, Daniel Castillo, George Siopsis, et al.
We derive the continuous-time limit of discrete quantum walks with topological phases. We show the existence of a continuous-time limit that preserves their topological phases. We consider both simple-step and splitstep walks, and derive analytically equations of motion governing their behavior. We obtain simple analytical solutions showing the existence of bound states at the boundary of two phases, and solve the equations of motion numerically in the bulk.
Time-continuous open quantum walks (Conference Presentation)
Radhakrishnan Balu, Chaobin Liu
Continuous-time open quantum walks (CTOQW) are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs. We show that a CTOQW always converges to a steady state regardless of the initial state when a graph is connected. When the graph is both connected and regular, it is shown that the steady state is the maximally mixed state. The difference of long-time behaviors between CTOQW and other two continuous-time processes on graphs is exemplified. The examples demonstrate that the structure of a graph can affect a quantum coherence effect on CTOQW through a long time run. Precisely, a quantum coherence effect persists throughout the evolution of the CTOQW when the underlying topology is certain irregular graphs (such as a path or a star as shown in the examples). In contrast, a quantum coherence effect will eventually vanish from the open quantum system when the underlying topology is a regular graph (such as a cycle).