Proceedings Volume 10115

Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X

cover
Proceedings Volume 10115

Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 10 May 2017
Contents: 11 Sessions, 30 Papers, 28 Presentations
Conference: SPIE OPTO 2017
Volume Number: 10115

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10115
  • Large Area Fabrication
  • Nanoplasmonics I
  • Nanoplasmonics II
  • Nanoplasmonics III
  • 10th Anniversary Session
  • Advanced Fabrication with DMD and SLM Devices: Joint Session with Conferences 10115 and 10117
  • Direct Laser Writing for Biological and Medical Applications: Joint Session with Conferences 10115 and 10095
  • 3D Laser Lithography for Production: Joint Session with Conferences 10115 and 10095
  • 3D Laser Lithography: Joint Session with Conferences 10115 and 10095
  • Poster Session
Front Matter: Volume 10115
icon_mobile_dropdown
Front Matter: Volume 10115
This PDF file contains the front matter associated with SPIE Proceedings Volume 10115, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Large Area Fabrication
icon_mobile_dropdown
Interference and nanoimprint lithography for the patterning of large areas
Nico Tucher, Hubert Hauser, Oliver Höhn, et al.
Micro- and nanostructures can be used for reflectance reduction or light guidance in applications like photovoltaic solar cells, LEDs or display technology. The combination of interference lithography and nanoimprint lithography enables the fabrication and replication of high resolution structures on large areas. The origination of master structures, seamlessly patterned on areas as large as 1.2 × 1.2 m2 was shown using interference lithography. Within this work we demonstrate our current results on the up-scaling of the replication process chain based on nanoimprint lithography with in-line capable tools. Application examples in the fields of photovoltaics are demonstrated, e.g. the micron-scale patterning of multicrystalline silicon substrates to increase the solar cell efficiency. Furthermore, the lifetime of soft PDMS stamps is investigated. AFM force-distance measurements are introduced as suitable method to quantify the PDMS hardness as a parameter indicating stamp degradation. This technique is subsequently applied to evaluate two different resist materials. Applying the epoxy material (SU-8) with its more complex molecular structure results in a strongly increased stamp lifetime compared to the acrylate resist (Laromer LR 8996). This is a highly valuable result for further developments towards an up-scaled realization of nanoimprint lithography.
Manufacturing of polymer optical waveguides using self-assembly effect on pre-conditioned 3D-thermoformed flexible substrates
Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.
Partial etch phase (PEP) optical elements for high-volume applications
T. W. Mossberg, J. M. Hannigan, D. Iazikov
Using binary etch and sub-wavelength DUV photolithography, we have designed and fabricated a variety of flat optical devices (lenses, vortex phase plates, vortex plus lens, and diffusers) useful in telecommunications and other areas. The devices provide the precision and low cost associated with modern semi-conductor manufacturing and offer unique functional performance. Since the design method involves selective binary removal of substrate material we designate derivative devices partial etch phase (PEP) devices. Design principles and fabricated device performance are described.
Biomimetic hairy surfaces as superhydrophobic highly transmissive films for optical applications (Conference Presentation)
Felix Vuellers, Guillaume Gomard, Jan B. Preinfalk, et al.
Combining high optical transmission, water-repellency and self-cleaning is of great interest for optoelectronic devices operating in outdoor conditions, such as photovoltaics where shading can significantly reduce the power output. The surface of water plant Pistia stratiotes combines these functionalities through a dense layer of transparent microhairs. It renders the surface superhydrophobic without affecting absorption of sunlight necessary for photosynthesis. Inspired by this surface, we fabricated a superhydrophobic flexible thin nanofur film made from optical grade polycarbonate using a scalable combination of hot embossing and hot pulling techniques. During fabrication, heated sandblasted steel plates locally elongate softened polymer, thus covering its surface in microcavities surrounded by high aspect ratio micro- and nanohairs. The superhydrophobic nanofur exhibits contact angles of (166±6°), low sliding angles (<6°) and is self-cleaning against various contaminants. The overall transmission of the self-standing nanofur film stands above 85% over the visible range, with 97% of the transmitted light scattered forward. Reflection drops below 4% when coated on a polymeric substrate, which can enhance light extraction in organic light emitting diodes (OLEDs). We report an increase of more than 10% in luminous efficacy for a nanofur coated OLED compared to a bare device. Finally, the nanofur film can be used for enhancing the incoupling of light to solar cells, while additionally providing self-cleaning properties. Optical coupling of the nanofur to a multi-crystalline silicon solar cell results in a 5.8% gain in photocurrent compared to a bare device under normal incidence.
Nanoplasmonics I
icon_mobile_dropdown
Inorganic nanomembranes for quantum photonics and optoplasmonics (Conference Presentation)
Oliver G Schmidt
Nanomembranes are thin, transferable and can be shaped into almost arbitrary geometries. We embed high quality quantum emitters into III-V semiconductor nanomembranes and transfer them onto piezoelectric substrate actuators. By applying external piezoelectric stress, the quantum properties of single photon emitters can be accurately tuned and major steps towards a viable quantum communication technology have been reached. We also strain engineer thin SiOx based nanomembranes and shape them into fully integratable microtubular microcavities. These novel microarchitectures show photonic spin-orbit coupling, controlled coupling of surface plasmons to optical resonator modes as well as a high compatibility to new 3D integration schemes.
Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)
Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.
Integration of 3D printed lens with InGaN light-emitting diodes with enhanced light extraction efficiency
Yu Kee Ooi, Christopher Ugras, Cheng Liu, et al.
III-nitride based light-emitting diodes (LEDs) have great potential in various applications due to their higher efficiency and longer lifetime. However, conventional planar structure InGaN LED suffers from total internal reflection due to large refractive index contrast between GaN (nGaN = 2.5) and air (nair = 1), which results in low light extraction efficiency (ηextraction). Accordingly, various approaches have been proposed previously to enhance the ηextraction. Nevertheless, most of the proposed methods involve elaborated fabrication processes. Therefore, in this work, we proposed the integration of three-dimensional (3D) printing with LED fabrication as a straightforward and highlyreproducible method to improve the ηextraction. Specifically, 500-μm diameter dome-shaped lens of optically transparent acrylate-based photopolymer is 3D-printed on planar structure 500 × 500 μm2 blue-emitting LEDs. Light output power measurement shows that up to 9% enhancement at injection current 4 mA can be obtained from the LEDs with 3D printed lens on top as compared to LEDs without the lens. Angle-dependent electroluminescence measurement also exhibits significant light output enhancement between angles 0 and 30° due to the larger photon escape cone introduced by the higher refractive index of the 3D printed lens (nlens = 1.5) than the air medium as well as the enhanced light scattering effect attributed to the curvature surface of the 3D printed lens. Our simulation results based on 3D finitedifference time-domain method also show that up to 1.61-times enhancement in ηextraction can be achieved by the use of 3D-printed lens of various dimensions as compared to conventional structure without the lens.
LOPA-based direct laser writing of multi-dimensional and multi-functional photonic submicrostructures
We have recently developed a simple fabrication technique, called low one-photon absorption (LOPA) direct laser writing (DLW), to realize multi-dimensional and multi-functional polymer-based photonic submicrostructures. This technique employs a continuous-wave laser at 532 nm-wavelength with only few milliwatts and a simple optical setup, allowing to decrease the cost of the fabrication system by a factor of ten as compared to a commercial DLW system. In this report, we present various photonic structures, such as 2D and 3D micro- resonators, photonic and magnetic submicrostructures, and nonlinear optical structures fabricated by this LOPA- based DLW method. We also discuss about potential applications of those fabricated multi-dimensional and multi-functional photonic submicrostructures in opto-electronics, bio, as well as in opto-mechanics.
Nanoplasmonics II
icon_mobile_dropdown
Hybrid metal-dielectric nanostructures for advanced light-field manipulation (Conference Presentation)
Isabelle Staude, Rui Guo, Evgenia Rusak, et al.
All-dielectric and plasmonic nanostructures have complementary advantages regarding their capabilities for controlling light fields at the nanoscale [1]. While all-dielectric nanostructures can provide near-unity efficiency, plasmonic nanostructures are more compact and offer strong near-field enhancement. Combination of photonic nanostructures of both types offers a promising route towards compact optical elements that unify low absorption losses with small footprints, while at the same time providing a high versatility in engineering the optical response of the hybrid system towards specific functionalities. This talk aims to review our recent progress in coupling designed plasmonic nanoantennas to high-index dielectric nanostructures. Following a general analysis of coupling of plasmonic and high-refractive-index dielectric nanoresonators, various specific hybrid nanostructure designs will be discussed. For the fabrication of designed hybrid metal-dielectric nanostructures we use a two-step electron-beam lithography (EBL) procedure [2]. The first step of EBL is used in combination with reactive-ion etching to define the dielectric nanostructures. The second step of EBL is followed by evaporation of gold and a lift-off process, and serves to define the plasmonic elements. Between the two steps, a precision alignment procedure is performed in order to allow for the precise positioning of the gold nanostructures with respect to the silicon nanostructures. Using this approach, we realize and optically characterize various hybrid metal-dielectric nanostructures designed to support a range of novel functionalities, including directional emission enhancement [2] and on-chip light routing. [1] E. Rusak et al., Appl. Phys. Lett. 105, 221109 (2014). [2] R. Guo et al., ACS Photonics 3, 349–353 (2016).
Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking
Abigail P. Eckart, Gopal Sapkota, Matthew Potter, et al.
Random anti-reflecting subwavelength surface structures (rARSS) have been shown to suppress Fresnel reflection and scatter from optical surfaces. The structures effectively function as a gradient-refractive-index at the substrate boundary, and the spectral transmission properties of the boundary have been shown to depend on the structure’s statistical properties (diameter, height, and density.) We fabricated rARSS on fused silica substrates using gold masking. A thin layer of gold was deposited on the surface of the substrate and then subjected to a rapid thermal annealing (RTA) process at various temperatures. This RTA process resulted in the formation of gold “islands” on the surface of the substrate, which then acted as a mask while the substrate was dry etched in a reactive ion etching (RIE) process. The plasma etch yielded a fused silica surface covered with randomly arranged “rods” that act as the anti-reflective layer. We present data relating the physical characteristics of the gold “island” statistical populations, and the resulting rARSS “rod” population, as well as, optical scattering losses and spectral transmission properties of the final surfaces. We focus on comparing results between samples processed at different RTA temperatures, as well as samples fabricated without undergoing RTA, to relate fabrication process statistics to transmission enhancement values.
New fabrication technique for nanoporous gold nanoparticles (Conference Presentation)
Nanoporous gold nanoparticles (NPG-NP) showcase tunable pore and ligament sizes ranging from nanometers to microns. The nanoporous structure and sub-wavelength nanoparticle shape contribute to its unique LSPR properties. NPG-NP features large specific surface area and high-density plasmonic field enhancement known as “hot-spots”. Hence, NPG-NP has found many applications in nanoplasmonic sensor development. In our recent studies, we have shown that NPG-NP array chip can be utilized for high-sensitivity detection by various enhanced spectroscopic modalities, as photothermal agents, and for disease biomarker detection. To date, array-format, substrate-bound NPGN has been fabricated by either colloidal nanosphere lithography or random nucleation during the sputtering deposition process. Although highly cost-effective, these techniques cannot provide precise control of individual particle size and location. In this paper, we report the development of a new fabrication technique based on electron-beam lithography (EBL). Herein, a customized EBL technique is utilized to pattern larger areas (several square millimeters) of randomly distributed NPGN by careful design of the shot pattern, which limits the writing time to the acceptable level. Since the position, size, and shape of a huge number of features need to be generated and stored individually, memory limitations of this unique EBL technique constitutes an additional challenge, which is normally not present if small areas are to be patterned with features on an ordered lattice. This issue is solved by programmatically generating random feature positions within a simulation cell of carefully chosen size and implementing periodic boundary conditions.
Nanoplasmonics III
icon_mobile_dropdown
Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam
Karen Sloyan, Henrik Melkonyan, Paulo Moreira, et al.
We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.
Metal free structural colours via disordered nanostructures with nm resolution and full CYMK colour spectrum
Structural colours represents a research area of great interest, due to a wide field of application ranging from micro-security to biomimetic materials. At present metallic substrate are heavily employed and only a partial spectra of colours can be realised. We propose a novel, metal-free technology that exploits the complex scattering from a disordered three-dimensional dielectric material on a silicon substrate. We reproduce experimentally the full spectrum of CMYK colours, including variations in intensity. Our resolution lies in the nm range, limited only by the electron beam lithography fabrication process. We demonstrate that this technique is extremely robust, suitable for flexible and reusable substrates. Full of these notable proprieties these nano-structures fits perfectly with the requirements of a real-world technology.
10th Anniversary Session
icon_mobile_dropdown
Elastomeric phase masks and transfer stamps: fabrication methods for micro/nano optical systems (Conference Presentation)
Research over the last decade has led to the emergence of several powerful methods for micro/nanofabrication, with direct relevance to optics and optoelectronic systems. This talk summarizes some of our contributions to this field, through the development techniques that use (1) conformal phase masks for photodefining 3D structures with applications in photonic crystals, (2) rubber transfer stamps for integrating inorganic semiconductor materials on plastic substrates for solid state lighting, emissive displays and efficient photovoltaics, and (3) stretchable assembly platforms for controlled transformation of 2D precursor structures into well-defined, complex 3D architectures for optical MEMS. In each case, we review the basic operating principles and provide some examples of enabled applications in optics and optoelectronics.
3D laser lithography: Quo vadis? (Conference Presentation)
3D printing on the macroscale is a huge trend worldwide. Ultimately, one would like to 3D print anything, including complete functional devices. Apart from boosting printing speed and pushing spatial resolution to the nanometer scale, 3D printing of many different materials poses a major challenge. In 2D graphical printers, thousands of different colors can be printed from just three color cartridges. By analogy, future 3D printers may print thousands of effective (meta-)materials from just a few materials cartridges. These metamaterials should not only be tailored in terms of their optical properties, but also electrical, magnetic, thermodynamic, mechanical, and bio-chemical.
Advanced Fabrication with DMD and SLM Devices: Joint Session with Conferences 10115 and 10117
icon_mobile_dropdown
Directed assembly of colloidal particles for micro/nano photonics (Conference Presentation)
Bottom-up fabrication of complex structures with chemically synthesized colloidal particles as building blocks pave an efficient and cost-effective way towards micro/nano photonics with unprecedented functionality and tunability. Novel properties can arise from quantum effects of colloidal particles, as well as inter-particle interactions and spatial arrangement in particle assemblies. Herein, I discuss our recent developments and applications of three types of techniques for directed assembly of colloidal particles: moiré nanosphere lithography (MNSL), bubble-pen lithography (BPL), and optothermal tweezers (OTTs). Specifically, MNSL provides an efficient approach towards creating moiré metasurface with tunable and multiband optical responses from visible to mid-infrared regime. Au moiré metasurfaces have been applied for surface-enhanced infrared spectroscopy, optical capture and patterning of bacteria, and photothermal denaturation of proteins. BPL is developed to pattern a variety of colloidal particles on plasmonic substrates and two-dimensional atomic-layer materials in an arbitrary manner. The laser-directed microbubble captures and immobilizes nanoparticles through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. OTTs are developed to create dynamic nanoparticle assemblies at low optical power. Such nanoparticle assemblies have been used for surface-enhanced Raman spectroscopy for molecular analysis in their native environments.
Laser-assisted dealloying for direct-write patterning of plasmonic nanostructures
Recently, nanoporous gold (NPG) has attracted significant interest due to its unique properties such as large specific surface area, bi-continuous nanostructure, high electrical conductivity and the applicability of thiol-gold surface chemistry. Patterned NPG disks showcase tunable pore and ligament sizes ranging from nanometers to microns. The nanoporous structure and sub-wavelength nanoparticle shape contribute to its unique LSPR properties. NPG disk not only features large specific surface area, but high-density plasmonic field enhancement known as “hot-spots”. Hence, NPG disks have found many applications in nanoplasmonic sensor development. In our recent studies, we have shown that NPG disks array chip can be utilized for high-sensitivity detection by various enhanced spectroscopic modalities, as photothermal agents, and for disease biomarker detection. To date, patterned NPG disks have been exclusively fabricated by colloidal nanosphere lithography. Starting with pattern transfer into alloy disks, dealloying subsequently turns the alloy disks into NPG disks. In this paper, we present another NPG patterning method by localized laser heating, during which dealloying occurs at the laser focal spots due to elevated temperature. This approach has enabled us to pattern NPG entity with various sizes and shapes. We have investigated fabrication parameters such as laser power, irradiation duration, and solution environment. We have also characterized the plasmonic resonance of the patterned NPG disks by extinction spectroscopy. The noncontact nature of this technique is well suited for the processing of substrates immersed in an aqueous environment. Further, this technique shares the same advantages as maskless laser direct writing.
Direct Laser Writing for Biological and Medical Applications: Joint Session with Conferences 10115 and 10095
icon_mobile_dropdown
Multi-photon microfabrication of three-dimensional capillary-scale vascular networks
Mark A. Skylar-Scott, Man-Chi Liu, Yuelong Wu, et al.
Biomimetic models of microvasculature could enable assays of complex cellular behavior at the capillary-level, and enable efficient nutrient perfusion for the maintenance of tissues. However, existing three-dimensional printing methods for generating perfusable microvasculature with have insufficient resolution to recapitulate the microscale geometry of capillaries. Here, we present a collection of multiphoton microfabrication methods that enable the production of precise, three-dimensional, branched microvascular networks in collagen. When endothelial cells are added to the channels, they form perfusable lumens with diameters as small as 10 μm. Using a similar photochemistry, we also demonstrate the micropatterning of proteins embedded in microfabricated collagen scaffolds, producing hybrid scaffolds with both defined microarchitecture with integrated gradients of chemical cues. We provide examples for how these hybrid microfabricated scaffolds could be used in angiogenesis and cell homing assays. Finally, we describe a new method for increasing the micropatterning speed by synchronous laser and stage scanning. Using these technologies, we are working towards large-scale (>1 cm), high resolution (~1 μm) scaffolds with both microarchitecture and embedded protein cues, with applications in three-dimensional assays of cellular behavior.
Process development for high-resolution 3D-printing of bioresorbable vascular stents
Henry Oliver T. Ware, Adam C. Farsheed, Robert van Lith, et al.
The recent development of “continuous projection microstereolithography” also known as CLIP technology has successfully alleviated the main obstacles surrounding 3D printing technologies: production speed and part quality. Following the same working principle, we further developed the μCLIP process to address the needs for high-resolution 3D printing of biomedical devices with micron-scale precision. Compared to standard stereolithography (SLA) process, μCLIP fabrication can reduce fabrication time from several hours to as little as a few minutes. μCLIP can also produce better surface finish and more uniform mechanical properties than conventional SLA, as each individual “fabrication layer” continuously polymerizes into the subsequent layer. In this study, we report the process development in manufacturing high-resolution bioresorbable stents using our own μCLIP system. The bioresorbable photopolymerizable biomaterial (B-ink) used in this study is methacrylated poly(1, 12 dodecamethylene citrate) (mPDC). Through optimization of our μCLIP process and concentration of B-ink components, we have created a customizable bioresorbable stent with similar mechanical properties exhibited by nitinol stents. Upon optimization, fabricating a 2 cm tall vascular stent that comprises 4000 layers was accomplished in 26.5 minutes.
Fabrication and characterization of multi-point side-firing optical fiber by laser micro-ablation (Conference Presentation)
Hoang Nguyen, Fusheng Zhao, Jingting Li, et al.
Compared to traditional optical fibers, which are designed to transmit light from one end to the other, a multi-point side firing optical fiber can be useful in several applications such as phototherapy, optogenetics brain stimulation and remote sensing. We present the fabrication and characterization of an optical fiber capable of launching light from virtually any point along its circumferential surface by laser micro-ablation. Continuous wave (CW) laser radiation was employed to form a conical-shaped cavity (side window) in the fiber core. Because of the total internal reflection, when the laser beam reached the side window-outside medium interface, the beam was reflected to the side of the optical fiber. A single side window on 730 μm fiber can deliver more than 8% of the total coupled light. Light-firing output can be increased to more than 19% by using femtosecond (fs) laser ablation on smaller optical fiber (65 µm). In addition, the fiber also exhibited 3-dimensional light emission by placing side-windows of various orientations on its axis. We envision the 65 um-OD multi-point side-firing optical fiber to be employed in optogenetics brain neuron stimulation in vivo. To test the feasibility of this approach, ablated fibers were investigated in agar-based tissue mimicking material (0.5% w/v in water). Successful multi-point side-firing capability has been demonstrated in the tissue phantom with similar refractive index. Furthermore, this experiment was also used to test the side-firing fiber’s mechanical strength in order to optimize the window’s depth.
Nanostencil lithography with scanning optical fiber tip
In this work, nanolithographic patterning by means of a nanostencil inscribed on an optical fiber tip is presented. Oneshot registration of multiple-sized features within a 4 μm diameter patterning circle has been experimentally tested on photoresist AZ5214E coated silicon substrate, with features as small as 160 nm beign obtained, replicating the original stencil with excellent agreement. The nanostencil was created by focused ion beam (FIB) milling, although other techniques such as femtosecond laser ablation or pattern transfer to fiber tip can also be employed. Stencils can be arbitrary or based on optical elementary designs such as line patterns, photonic crystals, Fresnel zone plates or photon sieve. Exact transfer of the inscribed pattern is obtained while in contact lithography, while proximity exposure enables complex modulation of the optical near-field by the phase and/or amplitude stencil mask. This allows for optical interference to occur, in full 3D space, rendering sub-wavelength spot focusing, annular pattern formation, as well as the formation of 3D complex shapes. Experimentally, a 405 nm laser beam with 17 mW power was launched into the core of UV-Visible single mode fiber (S405-XP) on which end a photon sieve was previously inscribed by FIB. This tip was scanned over the photoresist. Patterning consisted of 1Dscans, for which a minimum line width of 350 nm was obtained.Additionally, step-and-repeat patterning of the photon sieve fiber tip stencil was performed with, all features down to 160 nm being clearly resolved.
3D Laser Lithography for Production: Joint Session with Conferences 10115 and 10095
icon_mobile_dropdown
Two-photon polymerization as a structuring technology in production: future or fiction?
Emely Marie Harnisch, Robert Schmitt
Two-photon polymerization (TPP) has become an established generative fabrication technique for individual, up to three-dimensional micro- and nanostructures. Due to its high resolution beyond the diffraction limit, its writing speed is limited and in most cases, very special structures are fabricated in small quantities. With regard to the trends of the optical market towards higher efficiencies, miniaturization and higher functionalities, there is a high demand for so called intelligent light management systems, including also individual optical elements. Here, TPP could offer a fabrication technique, enabling higher complexities of structures than conventional cutting and lithographic technologies do. But how can TPP opened up for production? In the following, some approaches to establish TPP as a mastering technique for molding are presented against this background.
Progress in fabrication of waveguide spatial light modulators via femtosecond laser micromachining
Nickolaos Savidis, Sundeep Jolly, Bianca Datta, et al.
We have previously introduced a femtosecond laser micromachining-based scheme for the fabrication of anisotropic waveguides in lithium niobate for use in a guided-wave acousto-optic spatial light modulator. This spatial light modulation scheme is extensible to off-plane waveguide holography via the integration of a Bragg reflection grating. In this paper, we present femtosecond laser-based direct-write approaches for the fabrication of (1) waveguide in-coupling gratings and (2) volume Bragg reflection gratings via permanent refractive index changes within the lithium niobate substrate. In combination with metal surface-acoustic-wave transducers, these direct-write approaches allow for complete fabrication of a functional spatial light modulator via femtosecond laser direct writing.
Strategies for rapid and reliable fabrication of microoptical structures using two-photon polymerization
Sönke Steenhusen, Sebastian Hasselmann, Gerhard Domann
Two-Photon Polymerization (2PP) has attracted broad interest for the fabrication of microoptical elements due to its design flexibility and precision. Along with tailored hybrid polymers a higher level of functional integration and new application concepts are enabled. As the entire volume of the desired 3D structure is filled in a point-by-point fashion, the fabrication can require several days inhibiting the adoption of 2PP as an additive manufacturing process at industrial level. We review different strategies to overcome the limitation in throughput and their impact on the patterning result. Particularly, processing using galvoscanner technology and replication of 2PP structures are highlighted.
The development of all-polymer-based piezoelectrically active photocurable resin for 3D printing process (Conference Presentation)
Evan Baker, Weishen Chu, Henry Oliver T. Ware, et al.
We present in this work the development and experimental validation of a new piezoelectric material (V-Ink) designed for compatibility with projection stereolithography additive manufacturing techniques. Piezoelectric materials generate a voltage output when a stress is applied to the material, and also can be actuated by using an external voltage and power source. This new material opens up new opportunities for functional devices to be developed and rapidly produced at low cost using emerging 3D printing techniques. The new piezoelectric material was able to generate 115mV under 1N of strain after being polled at 80°C for 40 minutes and the optimal results had a piezoelectric coefficient of 105x10^(-3)V.m/N. The current iteration of the material is a suspension, although further work is ongoing to make the resin a true solution. The nature of the suspension was characterized by a time-lapse monitoring and through viscosity testing. The potential exists to further increase the piezoelectric properties of this material by integrating a mechanical to electrical enhancer such as carbon nanotubes or barium titanate into the material. Such materials need to be functionalized to be integrated within the material, which is currently being explored. Printing with this material on a “continuous SLA” printer that we have developed will reduce build times by an order of magnitude to allow for mass manufacturing. Pairing those two advancements will enable faster printing and enhanced piezoelectric properties.
Novel seamless origination and tooling approaches for film imprinting technologies
Jörg Mick, Volkmar Boerner, Christoph Stöver, et al.
There is a substantial demand for micro- and nanostructured surfaces in a large variety of industrial applications. Structured films in displays or light guiding plates for new types of luminaires are only a small but significant selection of potential fields of applications. To finally succeed in integrating a structured surface into a device, ideally the complete process chain is under control, starting with optical design, followed by origination and tooling and finally ending in mass replication technologies. In this work, the origination of micro- and nanostructures with interference lithography on very large formats is described. Also tooling and mass replication processes will be discussed within this paper in order to point out the closed process chain. However, all flat surface processes consequently result in structured films with at least one seamline. In terms of economic efficiency, many industrial sectors using micro- and nano-patterns wish to get rid of any kinds of seams in order to reduce the offcut in film production. We have developed an approach to transfer flat surface processes onto curved, convex surfaces without any seamlines, and to copy those structures into durable nickel sleeves for film production. Both technologies, seamless origination of patterns directly on cylindrical drums as well as cylindrical tooling capabilities are essential to fabricate films without any seamline. All new approaches will be presented within this paper.
3D Laser Lithography: Joint Session with Conferences 10115 and 10095
icon_mobile_dropdown
Laser subtractive-additive-welding microfabrication for Lab-On-Chip (LOC) applications
Linas Jonušauskas, Sima Rekštytė, Ričardas Buivydas, et al.
An approach employing ultrafast laser hybrid microfabrication combining ablation, 3D nanolithography and welding is proposed for the realization of Lab-On-Chip (LOC) device. The same laser setup is shown to be suitable for fabricating microgrooves in glass slabs, polymerization of fine meshes inside them, and, lastly, sealing the whole chip with cover glass into one monolithic piece. The created micro fluidic device proved its particle sorting function by separating 1 μm and 10 μm polystyrene spheres from a mixture. Next, a lens adapter for a cell phone's camera was manufactured via thermal extrusion 3D printing technique which allowed to achieve sufficient magnification to clearly resolve <10 μm features. All together shows fs-laser microfabrication technology as a flexible and versatile tool for study and manufacturing of Lab-On-Chip devices.
Direct-laser metal writing of surface acoustic wave transducers for integrated-optic spatial light modulators in lithium niobate
Bianca C. Datta, Nickolaos Savidis, Michael Moebius, et al.
Recently, the fabrication of high-resolution silver nanostructures using a femtosecond laser-based direct write process in a gelatin matrix was reported. The application of direct metal writing towards feature development has also been explored with direct metal fusion, in which metal is fused onto the surface of the substrate via a femtosecond laser process. In this paper, we present a comparative study of gelatin matrix and metal fusion approaches for directly laser-written fabrication of surface acoustic wave transducers on a lithium niobate substrate for application in integrated optic spatial light modulators.
Realisation of 3D metamaterial perfect absorber structures by direct laser writing
I. Fanyaeu, V. Mizeikis
We report design, fabrication and optical properties of 3D electromagnetic metamaterial structures applicable as perfect absorbers (PA) at mid infra-red frequencies. PA architecture consisting of single-turn metallic helices arranged in a periodic two-dimensional array enables polarization-invariant perfect absorption within a considerable range of incidence angles. The absorber structure is all-metallic, and in principle does not require metallic ground plane, which permits optical transparency at frequencies away from the PA resonance. The samples were fabricated by preparing their dielectric templates using Direct Laser Write technique in photoresist, and metalisation by gold sputtering. Resonant absorption in excess of 90% was found at the resonant wavelength of 7.7 μm in accordance with numerical modelling. Similar PA structures may prove useful for harvesting and conversion of infrared energy as well as narrow-band thermal emission and detection.
Automated aberration compensation in high numerical aperture systems for arbitrary laser modes (Conference Presentation)
Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF’s quality is crucial for the application’s performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1–3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy 216(1), 32–48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007). 3. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010). 4. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).
Nanostructures for highly efficient infrared detection
D. Gailevicius, Z. Hayran, M. Turduev, et al.
We propose a high sensitivity photodetection tool at near-infrared frequencies, based on a principle of slowed- and stopped-light in chirped photonic micro/nano-structures. The main goal is to substantially increase the efficiency of photodetection and provide chromatic resolution in infrared photodetection. In particular we concentrate on the design of the chirped photonic micro/nano-structures providing a maximum field enhancement, and frequency dependence of stopped light distribution.
Nonlinear polymer/quantum dots nanocomposite for two-photon nanolithography of photonic devices
In this paper we report on fabrication of a nanocomposite based on CdSe quantum dots mixed with commercial photoresist ORMOCOMP and proved its high structurability by direct laser writing. The distribution of quantum dots was visualised by transmission electron microscopy and the quality and geometrical parameters of the structures were studied by optical and atomic force microscopy. We manufactured a novel photonic device for Bloch surface electromagnetic waves in photonic crystals and thoroughly studied their propagation by both leakage microscopy and back focal plane imaging methods. By z-scan method we measured the nonlinear Kerr coefficient of quantum dots. Its high value makes the manufactured photonic device promising for all-optical switching applications.
Poster Session
icon_mobile_dropdown
Laser nanolithography and pyrolysis of SZ2080 hybrid for slowing light in 3D photonic crystals
Darius Gailevicius, Linas Jonušauskas, Danas Sakalauskas, et al.
In this work we explore a possibility to apply ultrafast 3D laser nanolithography in conjunction with pyrolysis to acquire glass-ceramic 3D structures in micro- and nano-scale. Laser fabrication allows for production of initial 3D structures with relatively small (hundreds nm - μm) feature sizes out of SZ2080 hybrid material. Then, postfabrication heating at 600°C in Ar atmosphere decomposes organic part of the material leaving the glass-ceramic component of the hybrid. Resulting structures are uniformly shrunk by 40%. This brings us one step closer to fabricating highly efficient slow-light absorbers.
Fabrication of electro-wetting liquid lenticular lens by using diffuser
Liquid lenticular multi-view system has great potential of three dimensional image realization. This paper aims to introduce a novel fabrication method of electro-wetting liquid lenticular lens using diffuser. The liquid lenticular device consists of a Ultraviolet (UV) adhesive chamber, two immiscible liquids and a sealing plate. The diffuser makes UV light spread slantly not directly to negative photoresist on a glass substrate. In this process, Su-8, the suitable material to fabricate a structure in high stature, is selected for negative photoresist. After forming a Su-8 chamber, the UV adhesive chamber is made through a PDMS sub-chamber that is made from the Su-8 chamber. As such, this research shows a result of a liquid lenticular lens having slanted side walls with an angle of 75 degrees. The UV adhesive chamber having slanted side walls is more advantageous for electro-wetting effect achieving high diopter than the chamber having vertical side walls. After that, gold is evaporated for electrode, and Parylene C and Teflon AF1600 is deposited for dielectric and hydrophobic layer respectively. For two immiscible liquids, DI water and a blend of 1-Chloronaphthalene and Dodecane with specific portions are used. Two immiscible liquids are injected in underwater environment and a glass that is coated with ITO on one side is sealed by UV adhesive. The completed tunable lenticular lens can switch two and three dimensional images by using electro-wetting principle that changes surface tensions by applying voltage. Also, dioptric power and response time of the liquid lenticular lens array are measured.
Ta2O5/ Al2O3/ SiO2 - antireflective coating for non-planar optical surfaces by atomic layer deposition
K. Pfeiffer, U. Schulz, A. Tünnermann, et al.
Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.
Bioresists from renewable resources as sustainable photoresins for 3D laser microlithography: material synthesis, cross-linking rate and characterization of the structures
Edvinas Skliutas, Sigita Kašėtaitė, Giedrė Grigalevičiūtė, et al.
Stereolithography (SLA) allows rapid and accurate materialization of computer aided design (CAD) models into real objects out of photoreactive resin. Nowadays this technology has evolved to a widespread simple and flexible personal tabletop devices - three dimensional (3D) optical printers. However, most 3D SLA printers use commercially available resins which are not cheap and of limited applicability, often of unknown chemical ingredients and fixed to certain mechanical properties. For advanced research, it is important to have bio-resin appropriate to 3D print microscaffolds for cell proliferation and tissue engineering. To fill these requirements would be to use sources from bio-based resins, which can be made of naturally derived oils. Chosen substances glycerol diglycidyl ether and epoxidized linseed oil can be obtained from renewable recourses, are biodegradable and can be synthesized as sustainable photosensitive materials.1 UV (ff=365 nm) lithography was employed to determine their photocross-linking rate and cured material properties. After exposing material to UV radiation through a micro-patterned amplitude mask selective photopolymerization was observed. Acetone was used as a solvent to dissolve UV unaffected area and leaving only exposed microstructures on the substrate. The resins were compared to FormLabs Form Clear and Autodesk Ember PR48 as standard stereolithography materials. Finally, 3D microporous woodpile scaffolds were printed out of commercial resins and cells adhesion in them were explored.
Two-stage evaporated ordered nanoporous ultrathin metal films using reusable template
Zeping Li, Zhimou Xu, Xiaopeng Qu, et al.
In this work, we present a versatile procedure for the formation of ordered nanoporous ultrathin metal film using reusable anodic aluminum oxide (AAO) template. Firstly, the Ag and Au films were evaporated on the bottom surface of AAO template sequentially, followed by selective removal of a sacrificial Ag film. This process results in an ultrathin nanoporous Au film was prepared without causing significant damage of the AAO replication template. The characterizations of SEM images indicate that obtained metal films have the hexagonal morphology similar to AAO template. The EDS analyses of the present Au film on the Si substrate indicate that Ag film was completely etched away. This novel fabrication method not only simplifies the preparation of ordered nanoporous ultrathin metal film, but also can be readily extended to other materials systems.
Holographic fabrication of hole arrays in AZO for study of surface plasmon resonances
David George, Safaa Hassan, Murthada Adewole, et al.
Transparent conducting oxides are part of a robust material class that is capable of supporting near-IR surface plasmon resonances (SPRs) which are strongly dependent on size, structure, and doping of the material. This study presents the implementation of holographic lithography to structure large area square lattice cylindrical hole arrays on the transparent conducting oxide thin film, aluminum doped zinc oxide (AZO). For fabricated structures on a glass substrate, SPR are indirectly measured by FTIR transmission and verified with electromagnetic simulations using a finite difference time domain method. Furthermore, it is shown that the SPR excited are standing wave resonances in the (1,1) direction of the lattice array located at the interface of the patterned AZO and glass substrate. This research extends the robust CMOS compatible fabrication techniques of holographic lithography into tunable conductive materials,and contributes to the core technology of future integrated photonics.
Reliability and manufacturability of 25G VCSELs with oxide apertures formed by in-situ monitoring
James J. Pao, Ta-Chung Wu, Wilson Kyi, et al.
Reliability and characterization of 850 nm 25 Gbit/s (25G) InGaAs/AlGaAs vertical-cavity surface-emitting lasers (VCSELs) with oxide apertures, fabricated at OEpic Semiconductors, Inc., are presented. These 25G VCSELs have demonstrated a threshold current of <1.0 mA and a slope efficiency of 0.45 W/A. An optical output power of >;5.0 mW and rise and fall times of 18 and 25 ps, respectively, have been achieved. The non-hermetically sealed VCSELs were stress tested at 85o C under bias for up to 1200 hours to achieve accelerated failure modes to predict atmospheric-ambient reliability for applications such as board-to-board data communications. VCSEL failures are likely due to a combination of factors including the propagation of dislocation defects from the oxide layers, the incorporation of ambient oxygen into and near the active region, as well as layer cracking and separation near the active regions due to stress from the mechanical strain induced by the oxide layers. Our high-speed VCSELs use 0.5λ optical cavity lengths and oxide layers that are as close as 126 nm to the active region. OEpic’s design uses two or more oxide apertures to increase current confinement, allowing for greater overall current density. The proximity of the oxide layers to the active region, coupled with the increased heating of the active region due to a higher current density, likely results in a non-radiative recombination-based lasing failure. An increase of the optical cavity length, a decrease of the selective oxidation rate, and a reduction of the oxide layer thickness are measures that are expected to improve the VCSEL reliability.
Quantum dot based 3D photonic devices
Ioanna Sakellari, Elmina Kabouraki, David Gray, et al.
In this work, we present our most recent results on the fabrication of 3D high-resolution woodpile photonic crystals containing an organic-inorganic silicon-zirconium (Si-Zr) composite and cadmium sulfide (CdS) quantum dots (QDs). The structures are fabricated by combining 3D Direct Laser Writing by two-photon absorption and in-situ synthesis of CdS nanoparticles inside the 3D photonic matrix. The CdS-Zr-Si composite material exhibits a high nonlinear refractive index value measured by means of Z-scan method. 3D woodpile photonic structures with varying inlayer periodicity from 600nm to 500nm show clear photonic stop bands in the wavelength region between 1000nm to 450nm.