Proceedings Volume 10095

Laser 3D Manufacturing IV

cover
Proceedings Volume 10095

Laser 3D Manufacturing IV

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 2 May 2017
Contents: 7 Sessions, 14 Papers, 7 Presentations
Conference: SPIE LASE 2017
Volume Number: 10095

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10095
  • Laser Direct Writing and LIFT
  • Additive Processes with Ultrafast Laser and of Glass
  • Process and Post Process Development and Materials for Additive Manufacturing II
  • Laser 3D Micro/Nano Structuring II
  • Industrial Applications and Systems for Additive Manufacturing I
  • Posters-Tuesday
Front Matter: Volume 10095
icon_mobile_dropdown
Front Matter: Volume 10095
This PDF file contains the front matter associated with SPIE Proceedings Volume 10095, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Laser Direct Writing and LIFT
icon_mobile_dropdown
Fabrication of 3D gold/polymer conductive microstructures via direct laser writing (Conference Presentation)
Eva Blasco, Jonathan B. Müller, Patrick Müller, et al.
During the last years there has been significant interest in the fabrication of conductive three-dimensional (3D) structures on the micrometer scale due to their potential applications in microelectronics or emerging fields such as flexible electronics, nanophotonics, and plasmonics. Two-photon direct laser writing (DLW) has been proposed as a potential tool for the fabrication of 3D microstructures in various contexts. The majority of these two-photon processes involve the preparation of insoluble polymeric networks using photopolymerizable photoresins based on acrylate or epoxy groups. Nevertheless, the preparation of conductive 3D microstructures is still very challenging. The aim of the current work has been the preparation of conductive 3D microstructures via DLW by employing a newly developed photoresist. The photoresist consists of acrylate-functionalized poly(ethylene glycol) derivates and HAuCl4 as the gold precursor. By varying the gold content of the photoresist, different structures have been prepared and characterized by SEM and XPS. Conductivity of individual wires between prefabricated macroelectrodes has been measured too. Subsequently, the material has been employed to demonstrate the possibility of true 3D microscale connections.
High-speed imaging and evolution dynamics of laser induced deposition of conductive inks (Conference Presentation)
Marina Makrygianni, Symeon Papazoglou, Filimonas Zacharatos, et al.
During the last decade there is an ever-increasing interest for the study of laser processes dynamics and specifically of the Laser Induced Forward Transfer (LIFT) technique, since the evolution of the phenomena under investigation may provide real time metrology in terms of jet velocity, adjacent jet interaction and impact pressure. The study of such effects leads to a more thorough understanding of the deposition process, hence to an improved printing outcome and in these frames, this work presents a study on the dynamics of LIFT for conductive nanoparticles inks using high-speed imaging approaches. Moreover, in this study, we investigated the printing regimes and the printing quality during the transfer of copper (Cu) nanoink, which is a metallic nanoink usually employed in interconnect formation as well as the printing of silver nanowires, which provide transparency and may be used in applications where transparent electrodes are needed as in photovoltaics, batteries, etc. Furthermore, we demonstrate the fabrication of an all laser printed resistive chemical sensor device that combines Ag nanoparticles ink and graphene oxide, for the detection of humidity fabricated on a flexible polyimide substrate. The sensor device architecture was able to host multiple pairs of electrodes, where Ag nanoink or nanopaste were laser printed, to form the electrodes as well as the electrical interconnections between the operating device and the printed circuit board. Performance evaluation was conducted upon flow of different concentrations of humidity vapors to the sensor, and good response (500 ppm limit of detection) with reproducible operation was observed.
Modeling of selective laser sintering/selective laser melting
Connor West, Xuan Wang
Selective laser sintering and selective laser melting are powder based additive manufacturing (AM) process that can rapidly manufacture parts with comparable mechanical properties to conventional manufacturing methods directly from digital files. However, the processing recipe development and design optimization of AM parts are often based on trial and error which erodes the benefit of AM. Modeling is a powerful tool to enable faster development cycle by significantly reducing the experimental efforts. In this paper we discussed the current status of selective laser sintering/melting modeling, in which the laser and powder interaction was studied to understand and predict the process and the properties of fabricated parts. A review of the current approach as well as future directions are presented.
How post-processing by selective thermal reflow can reduce the roughness of 3D lithography in micro-optical lenses
Robert Kirchner, Nachiappan Chidambaram, Mirco Altana, et al.
Most polymeric refractive micro-optics simultaneously demand ultra-smooth 3D topographies and precise geometry for high optical performance and low stray light. We have established a surface selective smoothening for thermoplastic polymers that does not affect the designed optical geometry. For example, high curvature corners required for a 50 μm tall optical diffuser device were maintained while the surface roughness was reduced to about 10 nm RMS. 3D master structures were fabricated using direct write laser-lithography with two-photon absorption. Master structures were then replicated into poly(methyl methacrylate) through a poly(dimethyl siloxane) intermediate copying step and subsequently smoothed-out by high-energy photon exposure and thermal post-processing. The smoothening results in a lower roughness compared to a direct writing strategy using even about 50 nm vertical discretization steps still enables 10 times faster writing times.
Additive Processes with Ultrafast Laser and of Glass
icon_mobile_dropdown
Laser-directed 3D assembly of carbon nanotubes using two-photon polymerization (Conference Presentation)
Ying Liu, Wei Xiong, Li Jia Jiang, et al.
Precise assembly of carbon nanotubes (CNTs) in arbitrary 3D space with proper alignment is critically important and desirable for CNT applications but still remains as a long-standing challenge. Using the two-photon polymerization (TPP) technique, it is possible to fabricate 3D micro/nanoscale CNT/polymer architectures with proper CNT alignments in desired directions, which is expected to enable a broad range of applications of CNTs in functional devices. To unleash the full potential of CNTs, it is strategically important to develop TPP-compatible resins with high CNT concentrations for precise assembly of CNTs into 3D micro/nanostructures for functional device applications. We investigated a thiol grafting method in functionalizing multiwalled carbon nanotubes (MWNTs) to develop TPP-compatible MWNT-thiol-acrylate (MTA) composite resins. The composite resins developed had high MWNT concentrations up to 0.2 wt%, over one order of magnitude higher than previously published work. Significantly enhanced electrical and mechanical properties of the 3D micro/nanostructures were achieved. Precisely controlled MWNT assembly and strong anisotropic effects were confirmed. Microelectronic devices made of the MTA composite polymer were demonstrated. The nanofabrication method can achieve controlled assembly of MWNTs in 3D micro/nanostructures, enabling a broad range of CNT applications, including 3D electronics, integrated photonics, and micro/nanoelectromechanical systems (MEMS/NEMS).
Additive manufacturing of borosilicate glass (Conference Presentation)
Junjie Luo, Jonathan T. Goldstein, Augustine M. Urbas, et al.
Glasses including have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of borosilicate glasses. Compared to soda-lime glasses, borosilicate glasses have improved coefficient of thermal expansion (CTE) and are widely used because of thermal shock resistance. In this work, borosilicate glass filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the workpiece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed glass as well as the residual stress trapped in the glass. The transparency of glass allows residual stress to be measured using a polariscope. The effect of the substrate as well and substrate temperature are analyzed. We show that if fracture due to thermal shock can be avoided during deposition, then the residual stress can be relieved with an annealing step, removing birefringence. When combined with progress toward avoiding bubble entrapment in printed glass, we show the AM approach has the potential to produce high quality optically transparent glass for optical applications.
Optical microdevices fabricated using femtosecond laser processing (Conference Presentation)
Adriano J. G. Otuka, Nathália B. Tomázio, Vinicius Tribuzi, et al.
Femtosecond laser processing techniques have been widely employed to produce micro or nanodevices with special features. These devices can be selectively doped with organic dyes, biological agents, nanoparticles or carbon nanotubes, increasing the range of applications. Acrylate polymers can be easily doped with various compounds, and therefore, they are interesting materials for laser fabrication techniques. In this work, we use multiphoton absorption polymerization (MAP) and laser ablation to fabricate polymeric microdevices for optical applications. The polymeric sample used in this work is composed in equal proportions of two three-acrylate monomers; while tris(2-hydroxyethyl)isocyanurate triacrylate gives hardness to the structure, the ethoxylated(6) trimethyl-lolpropane triacrylate reduces the shrinkage tensions upon polymerization. These monomers are mixed with a photoinitiator, the 2,4,6-trimetilbenzoiletoxifenil phosphine oxide, enabling the sample polymerization after laser irradiation. Using MAP, we fabricate three-dimensional structures doped with fluorescent dyes. These structures can be used in several optical applications, such as, RGB fluorescent microdevices or microresonators. Using azo compounds like dopant in the host resin, we can apply these structures in optical data storage devices. Using laser ablation technique, we can fabricate periodic microstructures inside polymeric bulks doped with xanthene dyes and single-walled carbon nanotubes, aiming applications in random laser experiments. In structured bulks we observed multi-narrow emission peaks over the xanthene fluorescence emission. Furthermore, in comparison with non-structured bulks, we observed that the periodic structure decreased the degree of randomness, reducing the number of peaks, but defining their position.
Microfluidic diffusivity meter: A tool to optimize CO2 driven Enhanced Oil Recovery
Puneeth S.B., Young Ho Kim, Sanket Goel
As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.
Process and Post Process Development and Materials for Additive Manufacturing II
icon_mobile_dropdown
Laser additive manufacturing of multimaterial tool inserts: a simulation-based optimization study
Sankhya Mohanty, Jesper Henri Hattel
Selective laser melting is fast evolving into an industrially applicable manufacturing process. While components produced from high-value materials, such as Ti6Al4V and Inconel 718 alloys, are already being produced, the processing of multi-material components still remains to be achieved by using laser additive manufacturing. The physical handling of multi-material in a SLM setup continues to be a primary challenge along with the selection of process parameters/plan to achieve the desired results – both challenges requiring considerable experimental undertakings. Consequently, numerical process modelling has been adopted towards tackling the latter challenge in an effective manner. In this paper, a numerical simulation based optimization study is undertaken to enable selective laser melting of multi-material tool inserts. A standard copper specimen covered by a thin layer of nickel is chosen, over which a layer of steel has been deposited using cold-spraying technique, such as to protect the microstructure of Ni during selective laser melting. The process modelled thus entails additively manufacturing a steel tool insert around the multi-material specimen with a goal of achieving a dense product while preventing recrystallization in the Nickel layer. The process is simulated using a high-fidelity thermo-microstructural model with constant processing parameters to capture the effect on Nickel layer. Based on results, key structural and process parameters are identified, and subsequently an optimization study is conducted using evolutionary algorithms to determine the appropriate process parameter values as well as processing sequence. The optimized process plan is then used to manufacture real multi-material tool insert samples by selective laser melting.
Brillouin micro-elastography of laser-processed materials
Vladislav V. Yakovlev, Dawson Nodurft, Zachary Coker, et al.
3D laser processing is becoming a mainstream of micro- and nano- fabrication. However, very little is known how physical, chemical and/or structural changes induced by laser irradiation affect local mechanical properties. In this report, we, for the first time, utilize Brillouin microspectroscopy to assess and image the variation of viscoelastic properties of materials induced by laser processing.
3D scanning and printing of airfoils for modular UAS
Robert P. Dahlgren, Ethan A. Pinsker, Omar G Dary, et al.
The NASA Ames Research Center has been developing small unmanned airborne systems (UAS) based upon remotecontrolled military aircraft such as the RQ-14 DragonEye and RQ-11 Raven manufactured by AeroVironment. The first step is replacing OEM avionics with COTS avionics that do not use military frequencies for command and control. 3D printing and other rapid prototyping techniques are used to graft RQ-14 components into new “FrankenEye” aircraft and RQ-11 components into new “FrankenRaven” airframes. To that end, it is necessary to design new components to concatenate wing sections into elongated wingspans, construct biplane architectures, attach payload pods, and add control surfaces. When making components such as wing splices it is critical that the curvature and angles of the splice identically match the existing wing at the mating surfaces. The RQ-14 has a thick, simple airfoil with a rectangular planform and no twist or dihedral which make splice development straightforward. On the other hand the RQ-11 has a much thinner sailplane-type airfoil having a tapered polyhedral planform. 3D scanning of the Raven wings with a NextEngine scanner could not capture the complex curvature of the high-performance RQ-11 airfoil, resulting in non-matching and even misshapen splice prototypes. To characterize the airfoil a coordinate measuring machine (CMM) was employed to measure the wing’s shape, fiducials and mounting features, enabling capture of the subtle curves of the airfoil and the leading and trailing edges with high fidelity. In conclusion, both rapid and traditional techniques are needed to precisely measure and fabricate wing splice components.
Laser 3D Micro/Nano Structuring II
icon_mobile_dropdown
Bulk diamond optical waveguides fabricated by focused femtosecond laser pulses
J.P. Hadden, Belén Sotillo, Vibhav Bharadwaj, et al.
Diamond’s nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and their ability to be located, manipulated and read out using light. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532- nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work we show the possibility of buried waveguide fabrication in diamond, enabled by focused femtosecond high repetition rate laser pulses. We use μRaman spectroscopy to gain better insight into the structure and refractive index profile of the optical waveguides.
Industrial Applications and Systems for Additive Manufacturing I
icon_mobile_dropdown
Wire-based laser metal deposition for additive manufacturing of Ti6Al4V: Basic investigations of microstructure and mechanical properties from build up parts
Fritz Klocke, Kristian Arntz, Nils Klingbeil, et al.
The wire-based laser metal deposition (LMD-W) is a new technology which enables to produce complex parts made of titanium for the aerospace and automotive industry. For establishing the LMD-W as a new production process it has to be proven that the properties are comparable or superior to conventional produced parts. The mechanical properties were investigated by analysis of microstructure and tensile test. Therefore, specimens were generated using a 4.5 kW diode laser cladding system integrated in a 5-Axis-machining center. The structural mechanical properties are mainly influence by crystal structure and thereby the thermal history of the work piece. Especially the high affinity to oxide, distortion and dual phase microstructure make titanium grade 5 (TiAl6V4) one of the most challenging material for additive manufacturing. By using a proper local multi-nozzle shielding gas concept the negative influence of oxide in the process could be eliminated. The distortion being marginal at a single bead, accumulated to a macroscopic effect on the work piece. The third critical point for additive processing of titanium, the bimodal microstructure, could not be cleared by the laser process alone. All metallurgical probes showed α-martensitic-structure. Therefore, a thermal treatment became a necessary production step in the additive production chain. After the thermal treatment the microstructure as well as the distortion was analyzed and compared with the status before. Although not all technical issues could be solved, the investigation show that LMD-W of titanium grade 5 is a promising alternative to other additive techniques as electronic beam melting or plasma deposition welding.
Posters-Tuesday
icon_mobile_dropdown
Development of 100W class blue direct diode laser coating system for laser metal deposition
Laser cladding technique is widely used for industrial application such as oil, energy industry, and aircraft and so on because it is able to repair and to form a near net shape. This process have been employed infrared lasers with wavelength of 0.8-10.6μm since output power of these lasers have over 1000W. Metal processing efficiency was, however, low in these wavelength, because the absorption was low. Thus, we developed the laser cladding system with blue direct diode laser at the wavelength of 445nm. 6 blue diode lasers was combined on the focusing spot to reach the output power of 100W by a lens, which one blue diode laser module was maximum output power of 20W. By using this laser cladding system, a pure copper film coating on a SUS304 stainless steel plate was demonstrated from a copper powder. As the result, the copper layer was formed on SUS304 stainless steel plate at the width of 322μm and thickness of 534μm was formed on the substrate.
Effect on beam profile of Ti alloy plate fabrication from powder by sputter-less selective laser melting
Yuji Sato, Masahiro Tsukamoto, Yorihiro Yamashita, et al.
Titanium alloy (Ti-6Al-4V) ,which has a crystal orientation of α+β type, are clinical employed for an artificial bone and a hard tissue implant for human body because of light, nonmagnetic, weather resistance and biocompatibility, but it is difficult to form a complicated structure, as a bionic structure, owing to a difficult-to-cut machine material. Thus, titanium alloy plates were fabricated by selective laser melting (SLM) in vacuum. Melting and solidification process were captured with high speed video camera, it was found that sputter was depended on the surface roughness. The sputter-less fabrication for SLM in vacuum was developed to minimize the surface roughness to 0.6μm at the laser scanning speed of 10mm/s. It was also determined that crystal orientation was evaluated with X-ray diffraction (XRD). It was recorded from the powder peaks of α (1011), α (0002), α (1010), and α (1012) that the crystal orientation is composed mainly of martensitic alpha by XRD analysis. Diffraction peaks corresponding to β (110) were detected in vacuum SLM processed samples.
Multifunctional cube-like system for biomedical applications featuring 3D printing by dual deposition, scanner, and UV engraving
J. V. Guzmán-González, M. I. Saldaña-Martínez, O. G. Barajas-González, et al.
In this paper, a cubic-like structure is proposed to scan and print tools used as medical equipment at low cost for developing countries. The structure features a 3-axis frame plane that uses high-precision step motors. An actuator drives the “x and y” axis through serrated bands with 2 mm pitch. Those give an accuracy of 2.5 microns tops. The z-axe is driven by and inductive sensor that allows us to keep the focus to the printing bed as well as to search for non-smooth areas to correct it and deliver an homogeneous impression. The 3D scanner as well as the entire gears are placed underneath in order to save space. As extrude tip, we are using a 445 nm UV laser with 2000 mW of power. The laser system is able to perform several functions such as crystallizing, engraving or cut though a set of mirror arrays. Crystallization occurs when the laser is guided towards the base. This process allows us to direct it towards the polymer injector and as a result, it crystalizes on the spot. Another feature that this system is the engraving process that occurs while the base moves. The movement allows the beam to pass freely towards the base and perform the engraving process.
Galvanometer scanning technology for laser additive manufacturing
Xi Luo, Jin Li, Mark Lucas
A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.
Coordinate measuring system based on microchip lasers for reverse prototyping
Alexey Iakovlev, Alexsandr S. Grishkanich, Dmitriy Redka, et al.
According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.