Share Email Print

Proceedings Paper

Robust single-mode all solid photonic bandgap fibers with core diameter of 50 micron
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

There are still very strong interests for power scaling in high power fiber lasers for a wide range of applications in medical, industry, defense and science. In many of these lasers, fiber nonlinearities are the main limits to further scaling. Although numerous specific techniques have studied for the suppression of a wide range of nonlinearities, the fundamental solution is to scale mode areas in fibers while maintaining sufficient single mode operation. Here the key problem is that more modes are supported once physical dimensions of waveguides are increased. The key to solve this problem is to look for fiber designs with significant higher order mode suppression. In conventional waveguides, all modes are increasingly guided in the center of the waveguides when waveguide dimensions are increased. It is hard to couple a mode out in order to suppress its propagation, which severely limits their scalability. In an allsolid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses. In addition, the all-solid nature of the fiber makes it easily spliced to other fibers. In this paper, we will show for the first time that all-solid photonic bandgap fibers with effective mode area of ~920μm2 can be made with excellent higher order mode suppression.

Paper Details

Date Published: 26 February 2013
PDF: 11 pages
Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86011U (26 February 2013); doi: 10.1117/12.981805
Show Author Affiliations
Liang Dong, Clemson Univ. (United States)
Kunimasa Saitoh, Hokkaido Univ. (Japan)
Fanting Kong, Clemson Univ. (United States)
Thomas Hawkins, Clemson Univ. (United States)
Devon Mcclane, Clemson Univ. (United States)
Guancheng Gu, Clemson Univ. (United States)

Published in SPIE Proceedings Vol. 8601:
Fiber Lasers X: Technology, Systems, and Applications
Sami T. Hendow, Editor(s)

© SPIE. Terms of Use
Back to Top