Share Email Print
cover

Proceedings Paper

Coatings of oxide composites
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

During the last decade, coating processes have been extended to the reproducible deposition of composite materials on the basis of simultaneous evaporation or sputtering. Especially, ion beam sputtering from a zone target in conjunction with sophisticated optical broadband monitoring offers several advantages for the production of oxide coatings with defined mixture ratios and even Rugate filter systems with a continuous variation of the composition ratio in the depth of the layer structure. With only two materials on the zone targets, a large dynamic range of refractive index values covering the indices of the pure materials can be achieved. Recent studies on the properties of the produced oxide composites indicate a variety of interesting aspects opened by this new class of material. Among others, a blue shift of the absorption characteristic was observed for ternary oxides, and an increased LIDT, particularly for sub-picosecond coatings, has been reported. Also a number of investigations of fundamental damage mechanisms could be carried out by considering the tunable band gap energy of the coating material. In this endeavor, a group of international collaborators joined in modeling, testing and evaluating the properties of a variety of ternary oxide systems. A verification of principal material qualities was transferred to applicable multilayer coatings in a combined effort. In this paper, an overview on the achievements of these current studies is presented before the background of high power laser applications.

Paper Details

Date Published: 4 December 2012
PDF: 15 pages
Proc. SPIE 8530, Laser-Induced Damage in Optical Materials: 2012, 853013 (4 December 2012); doi: 10.1117/12.981526
Show Author Affiliations
Lars O. Jensen, Laser Zentrum Hannover e.V. (Germany)
Detlev Ristau, Laser Zentrum Hannover e.V. (Germany)
Ctr. for Quantum Engineering and Space-Time Research (Germany)


Published in SPIE Proceedings Vol. 8530:
Laser-Induced Damage in Optical Materials: 2012
Gregory J. Exarhos; Vitaly E. Gruzdev; Joseph A. Menapace; Detlev Ristau; M J Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top