Share Email Print
cover

Proceedings Paper

High performance organic field-effect transistor with oxide/metal bilayer electrodes
Author(s): Xinge Yu; Junsheng Yu; Wei Huang; Shijiao Han; Yadong Jiang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Pentacene organic field-effect transistors (OFETs) were fabricated by inserting a thin metallic oxide material MoO3 between pentacene and gold (Au) electrodes as an interlayer. Comparing with the corresponding single layer OFETs without any interlayer, theses OFETs with a thin MoO3 interlayer showed an obvious enhancement of hole mobility and slightly decrease of threshold voltage. The improvement of performance was investigated by interfacial energy level of the organic/metal interface, which showed that the MoO3 interlayer could significantly reduce the injection barrier between Au and pentacene. Moreover, the reduction of the injection barrier leads to a decrease of contact resistance at organic/metal interface, which improve the performance of the devices.

Paper Details

Date Published: 15 October 2012
PDF: 5 pages
Proc. SPIE 8419, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, 84190E (15 October 2012); doi: 10.1117/12.977848
Show Author Affiliations
Xinge Yu, Univ. of Electronic Science and Technology of China (China)
Junsheng Yu, Univ. of Electronic Science and Technology of China (China)
Wei Huang, Univ. of Electronic Science and Technology of China (China)
Shijiao Han, Univ. of Electronic Science and Technology of China (China)
Yadong Jiang, Univ. of Electronic Science and Technology of China (China)


Published in SPIE Proceedings Vol. 8419:
6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy
Yadong Jiang; Junsheng Yu; Zhifeng Wang, Editor(s)

© SPIE. Terms of Use
Back to Top