Share Email Print
cover

Proceedings Paper

Design and simulation of arrayed waveguide grating (AWG) for micro-Raman spectrometer
Author(s): Yaqin Cheng; Shengfeng Deng; Yingchao Xu; Miao Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Micro Raman spectrometer has broad applications for monitoring harmful chemicals in food, water and environment. Arrayed waveguide grating (AWG) is a promising device to build a dispersive micro Raman spectrometer. Comparing with the widely used demultiplexer in optical communication, AWG in spectrometer is unique due to its broad spectral range and low insert loss. In this paper, a computer algorithm routine was explored to accomplish the design of a broadband, arbitrary AWG structure. First, the focal length, length increment of adjacent waveguide and diffraction order of an AWG were figured out by a MATLAB program, the coordinates was then input into a VBScript program to generate the layout, and the layout was analyzed in OptiwaveBPM software for optical characterization. The proposed MATLAB and VBScript program was verified by the design and simulation of a 800-1000 nm range, 40 channels asymmetric AWG, a spectral resolution of 5 nm was demonstrated with insert loss of 5.03-7.16 dB. In addition, an approach to realize multimode input was introduced to reduce the optical coupling loss. Multimode light beam was firstly converted to a series of single mode beams by the methods proposed by S. G. Leon-Saval et al. in 2005. Next, these single mode beams were coupled into the input star coupler of an AWG. As a proof of this concept, a three inputs, 20 channel, 850-950 nm spectral range AWG was simulated, and merits and drawbacks of this approach were discussed.

Paper Details

Date Published: 15 October 2012
PDF: 6 pages
Proc. SPIE 8419, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, 841908 (15 October 2012); doi: 10.1117/12.977822
Show Author Affiliations
Yaqin Cheng, Xiamen Univ. (China)
Shengfeng Deng, Xiamen Univ. (China)
Yingchao Xu, Xiamen Univ. (China)
Miao Lu, Xiamen Univ. (China)


Published in SPIE Proceedings Vol. 8419:
6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy
Yadong Jiang; Junsheng Yu; Zhifeng Wang, Editor(s)

© SPIE. Terms of Use
Back to Top