Share Email Print
cover

Proceedings Paper

Isolated tree 3D modeling: based on photographing leaf area density(LAD) calculation and L-system method
Author(s): Shengye Jin; Masayuki Tamura
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper we developed a 3D L-System tree model which expresses the leaf area density (LAD). As a key parameter, which conveys the thickness degree of the canopy and interaction capacity between a tree and the atmosphere, LAD is an important aspect in radiation transfer modeling within the vegetation canopy during the last decades. For modeling a tree, L-System is a good application which explains the internal canopy structure in detail. In the study, we developed the tree model in 3 steps. First we took photographs from eight directions using a commercial digital camera, and then extracted the canopy gap fraction. Secondly, we collected the sample camphor tree’s leaf angles in the field for getting the leaf angle density function and computed the G-function from leaf angle density. We calculated the sample tree’s LAD by Beer-Lambert’s law. LAI-2000 instrument was the standard data source provider for evaluating the photographing method’s LAD result. We set the L-System tree parameters in order to coincide with the real tree. The tree model visualization was performed by using POV-Ray v3.60. The eight directions photographing method’s LAD result (0.54) was significantly close with the LAI-2000 adjusted data (0.52). Similarly the L-system tree models LAD mean value for 1000 samples was observed to be 0.54 which is close to the validation results.

Paper Details

Date Published: 21 November 2012
PDF: 8 pages
Proc. SPIE 8524, Land Surface Remote Sensing, 85240X (21 November 2012); doi: 10.1117/12.977273
Show Author Affiliations
Shengye Jin, Kyoto Univ. (Japan)
Masayuki Tamura, Kyoto Univ. (Japan)


Published in SPIE Proceedings Vol. 8524:
Land Surface Remote Sensing
Dara Entekhabi; Yoshiaki Honda; Haruo Sawada; Jiancheng Shi; Taikan Oki, Editor(s)

© SPIE. Terms of Use
Back to Top