Share Email Print

Proceedings Paper

CAGD-Based Computer Vision
Author(s): Thomas C. Henderson; Chuck Hansen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Three-dimensional model-based computer vision uses geometric models of objects and sensed data to recognize objects in a scene. Likewise, Computer Aided Geometric Design (CAGD) systems are used to interactively generate three-dimensional models during the design process. Despite this similarity, there has been a dichotomy between these fields. Recently, the unification of CAGD and vision systems has become the focus of research in the context of manufacturing automation. This paper explores the connection between CAGD and computer vision. A method for the automatic generation of recognition strategies based on the geometric properties of shape has been devised and implemented. This uses a novel technique developed for quantifying the following properties of features which compose models used in computer vision: robustness, completeness, consistency, cost, and uniqueness. By utilizing this information, the automatic synthesis of a specialized recognition scheme, called a Strategy Tree, is accomplished. Strategy Trees describe, in a systematic and robust manner, the search process used for recognition and localization of particular objects in the given scene. They consist of selected featureS which satisfy system constraints and Corroborating Evidence Subtrees which are used in the formation of hypotheses. Verification techniques, used to substantiate or refute these hypotheses, are explored.

Paper Details

Date Published: 22 August 1988
PDF: 8 pages
Proc. SPIE 0938, Digital and Optical Shape Representation and Pattern Recognition, (22 August 1988); doi: 10.1117/12.976620
Show Author Affiliations
Thomas C. Henderson, The University of Utah (United States)
Chuck Hansen, The University of Utah (United States)

Published in SPIE Proceedings Vol. 0938:
Digital and Optical Shape Representation and Pattern Recognition
Richard D. Juday, Editor(s)

© SPIE. Terms of Use
Back to Top