Share Email Print
cover

Proceedings Paper

Improvement of CdTe passivation by vacuum evaporation on HgCdTe infrared focal plane arrays
Author(s): Jingjie Xu; Songmin Zhou; Xingguo Chen; Qingjun Liao; Yanfeng Wei; Chun Lin; Jianrong Yang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Deposition in thermal ambience can obtain better CdTe passivation layers compared with general evaporation process. HgCdTe infrared focal plane arrays are fabricated to confirm the new process works well. Contrast n+-on-p planar photodiodes are manufactured from the same HgCdTe epilayer. Some use new process while others use general process. The performance of devices using new process shows a significant improvement. The device with general passivation process has a dark current of 7.8×10-7 A at 50 mV negative bias voltage, and the differential resistance at zero bias is 2.6×105 Ω. Meanwhile, the device with new passivation process has a dark current of 1.7×10-8 A at 50 mV negative bias voltage, and the differential resistance at zero bias is 8.0×105 Ω. Moreover, this new heating process provides a better thermal stability. The performance of devices with general passivation process declines after a long time baking at 70 °C. But the performance of the devices with heating passivation process improves a little after a long time baking even at 80 °C. The results show that CdTe deposition by vacuum evaporation in a thermal ambience can make a good HgCdTe surface passivation protection.

Paper Details

Date Published: 15 October 2012
PDF: 6 pages
Proc. SPIE 8419, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, 84192D (15 October 2012); doi: 10.1117/12.975739
Show Author Affiliations
Jingjie Xu, Shanghai Institute of Technical Physics (China)
Graduate Univ. of Chinese Academy of Sciences (China)
Songmin Zhou, Shanghai Institute of Technical Physics (China)
Xingguo Chen, Shanghai Institute of Technical Physics (China)
Qingjun Liao, Shanghai Institute of Technical Physics (China)
Yanfeng Wei, Shanghai Institute of Technical Physics (China)
Chun Lin, Shanghai Institute of Technical Physics (China)
Jianrong Yang, Shanghai Institute of Technical Physics (China)


Published in SPIE Proceedings Vol. 8419:
6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy
Yadong Jiang; Junsheng Yu; Zhifeng Wang, Editor(s)

© SPIE. Terms of Use
Back to Top