Share Email Print
cover

Proceedings Paper

Mathematical model for active lap to achieve unsymmetrical fabrication
Author(s): Haitao Liu; Zhige Zeng; Fan Wu; Bin Fan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A new mathematical model is proposed to calculate the Material Removal (MR) on any point of the mirror’s surface during Computer Controlled Active Lap (CCAL)’s grinding and polishing. In this model, the workpiece rotation rate ω1, lap rotation rate ω2 and the pressure P which applied on the workpiece surface by active lap are binary functions in the mirror polar coordinate system whose polar axis is from workpiece center to lap center’s initial position. The independent variables ρ and θ are the coordinates of lap center during fabrication, so the rotation rate and pressure is become to ω1(ρ, θ), ω2(ρ, θ) and P(ρ, θ). According to the simulation, this model can produce unsymmetrical material removal by choosing unsymmetrical ω1(ρ, θ), ω2(ρ, θ) or P(ρ, θ). This means it is possible to get the optimal ω1, ω2 and P functions for the demanded material removal map, and make the effects of single circle manufacture much better. This model can give active lap the unsymmetrical fabrication capability, and suitable for correcting the astigmatism or grinding off-axis aspheric surface.

Paper Details

Date Published: 16 October 2012
PDF: 6 pages
Proc. SPIE 8416, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 841622 (16 October 2012); doi: 10.1117/12.975689
Show Author Affiliations
Haitao Liu, Institute of Optics and Electronics (China)
Graduate Univ. of Chinese Academy of Sciences (China)
Zhige Zeng, Institute of Optics and Electronics (China)
Fan Wu, Institute of Optics and Electronics (China)
Bin Fan, Institute of Optics and Electronics (China)


Published in SPIE Proceedings Vol. 8416:
6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies
Li Yang; Eric Ruch; Shengyi Li, Editor(s)

© SPIE. Terms of Use
Back to Top