Share Email Print
cover

Proceedings Paper

Evaluation Of Digital Unsharp-Mask Filtering For The Detection Of Subtle Mammographic Microcalcifications
Author(s): Heang-Ping Chan; Carl J. Vyborny; Heber MacMahon; Charles E. Metz; Kunio Doi; Edward A. Sickles
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have conducted a study to assess the effects of digitization and unsharp-mask filtering on the ability of observers to detect subtle microcalcifications in mammograms. Thirty-two conventional screen-film mammograms were selected from patient files by two experienced mammographers. Twelve of the mammograms contained a suspicious cluster of microcalcifications in patients who subsequently underwent biopsy. Twenty of the mammograms were normal cases which were initially interpreted as being free of clustered microcalcifications and did not demonstrate such on careful review. The mammograms were digitized with a high-quality Fuji image processing/simulation system. The system consists of two drum scanners with which an original radiograph can be digitized, processed by a minicomputer, and reconstituted on film. In this study, we employed a sampling aperture of 0.1 mm X 0.1 mm and a sampling distance of 0.1 mm. The density range from 0.2 to 2.75 was digitized to 1024 grey levels per pixel. The digitized images were printed on a single emulsion film with a display aperture having the same size as the sampling aperture. The system was carefully calibrated so that the density and contrast of a digitized image were closely matched to those of the original radiograph. Initially, we evaluated the effects of the weighting factor and the mask size of a unsharp-mask filter on the appearance of mammograms for various types of breasts. Subjective visual comparisons suggested that a mask size of 91 X 91 pixels (9.1 mm X 9.1 mm) enhances the visibility of microcalcifications without excessively increasing the high-frequency noise. Further, a density-dependent weighting factor that increases linearly from 1.5 to 3.0 in the density range of 0.2 to 2.5 enhances the contrast of microcalcifications without introducing many potentially confusing artifacts in the low-density areas. An unsharp-mask filter with these parameters was used to process the digitized mammograms. We conducted observer performance experiments to evaluate the detectability of micro-calcifications in three sets of mammograms: the original film images, unprocessed digitized images, and unsharp-masked images. Each set included the same 20 normal cases and 12 abnormal cases. A total of 5 board-certified radiologists and 4 senior radiology residents participated as observers. In the first experiment, the detectability of microcalcifications was measured for the original, unprocessed digitized, and unsharp-masked images. Each observer read all 96 films in one session with the cases arranged in a different random order. A maximum of 15 seconds was allowed to read each image. To facilitate receiver operating character-istic (ROC) analysis, each observer ranked his/her observation regarding the presence or absence of a cluster of 3 or more microcalcifications on a 5-point confidence rating scale (1=definitely no microcalcifications, 2=probably no microcalcifications; 3=microcalcifi-cations possibly present; 4=microcalcifications probably present; 5=microcalcifications definitely present). The observer identified the location of the suspected microcalci-fications when the confidence rating was 2 or greater. In the second experiment, we evaluated whether reading the unsharp-masked image and the unprocessed digitized image side by side for each case would reduce false-positive detection rates for microcalcifications and thus improve overall performance. The observer was again allowed a maximum of 15 seconds to read each pair of images and was instructed to use the unsharp-masked image for primary reading and the unprocessed digitized image for reference. The experimental setting and procedures were otherwise the same as those for the first experiment.

Paper Details

Date Published: 12 June 1986
PDF: 2 pages
Proc. SPIE 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems, (12 June 1986); doi: 10.1117/12.975412
Show Author Affiliations
Heang-Ping Chan, The University of Chicago (United States)
Carl J. Vyborny, The University of Chicago (United States)
Heber MacMahon, The University of Chicago (United States)
Charles E. Metz, The University of Chicago (United States)
Kunio Doi, The University of Chicago (United States)
Edward A. Sickles, University of California (United States)


Published in SPIE Proceedings Vol. 0626:
Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems
Samuel J. Dwyer; Roger H. Schneider, Editor(s)

© SPIE. Terms of Use
Back to Top