Share Email Print
cover

Proceedings Paper

Single crystal fibers for high power lasers
Author(s): W. Kim; C. Florea; C. Baker; D. Gibson; L. B. Shaw; S. Bowman; S. O'Connor; G. Villalobos; S. Bayya; I. D. Aggarwal; J. S. Sanghera
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, we present our recent results in developing cladded-single crystal fibers for high power single frequency fiber lasers significantly exceeding the capabilities of existing silica fiber based lasers. This fiber laser would not only exploit the advantages of crystals, namely their high temperature stability, high thermal conductivity, superior environmental ruggedness, high propensity for rare earth ion doping and low nonlinearity, but will also provide the benefits from an optical fiber geometry to enable better thermal management thereby enabling the potential for high laser power output in short lengths. Single crystal fiber cores with diameters as small as 35m have been drawn using high purity rare earth doped ceramic or single crystal feed rods by Laser Heated Pedestal Growth (LHPG) process. The mechanical, optical and morphological properties of these fibers have been characterized. The fibers are very flexible and show good overall uniformity. We also measured the optical loss as well as the non-radiative loss of the doped crystal fibers and the results show that the fibers have excellent optical and morphological quality. The gain coefficient of the crystal fiber matches the low quantum defect laser model and it is a good indication of the high quality of the fibers.

Paper Details

Date Published: 8 November 2012
PDF: 6 pages
Proc. SPIE 8547, High-Power Lasers 2012: Technology and Systems, 85470K (8 November 2012); doi: 10.1117/12.974848
Show Author Affiliations
W. Kim, U.S. Naval Research Lab. (United States)
C. Florea, Sotera Defense Solutions, Inc. (United States)
C. Baker, U.S. Naval Research Lab. (United States)
D. Gibson, U.S. Naval Research Lab. (United States)
L. B. Shaw, U.S. Naval Research Lab. (United States)
S. Bowman, U.S. Naval Research Lab. (United States)
S. O'Connor, U.S. Naval Research Lab. (United States)
G. Villalobos, U.S. Naval Research Lab. (United States)
S. Bayya, U.S. Naval Research Lab. (United States)
I. D. Aggarwal, Sotera Defense Solutions, Inc. (United States)
J. S. Sanghera, U.S. Naval Research Lab. (United States)


Published in SPIE Proceedings Vol. 8547:
High-Power Lasers 2012: Technology and Systems
Harro Ackermann; Willy L. Bohn, Editor(s)

© SPIE. Terms of Use
Back to Top