Share Email Print

Proceedings Paper

Wireless acoustic modules for real-time data fusion using asynchronous sniper localization algorithms
Author(s): S. Hengy; S. De Mezzo; P. Duffner; P. Naz
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Research Institute of Saint-Louis (ISL) has been conducting studies in the domain of acoustic localization of shots. Mobile antennas mounted on the soldier's helmet were initially used for real-time detection, classification and localization of sniper shots. It showed good performances in land scenarios, but also in urban scenarios if the array was in the shot corridor, meaning that the microphones first detect the direct wave and then the reflections of the Mach and muzzle waves (15% distance estimation error compared to the actual shooter array distance). Fusing data sent by multiple sensor nodes distributed on the field showed some of the limitations of the technologies that have been implemented in ISL's demonstrators. Among others, the determination of the arrays' orientation was not accurate enough, thereby degrading the performance of data fusion. Some new solutions have been developed in the past year in order to obtain better performance for data fusion. Asynchronous localization algorithms have been developed and post-processed on data measured in both free-field and urban environments with acoustic modules on the line of sight of the shooter. These results are presented in the first part of the paper. The impact of GPS position estimation error is also discussed in the article in order to evaluate the possible use of those algorithms for real-time processing using mobile acoustic nodes. In the frame of ISL's transverse project IMOTEP (IMprovement Of optical and acoustical TEchnologies for the Protection), some demonstrators are developed that will allow real-time asynchronous localization of sniper shots. An embedded detection and classification algorithm is implemented on wireless acoustic modules that send the relevant information to a central PC. Data fusion is then processed and the estimated position of the shooter is sent back to the users. A SWIR active imaging system is used for localization refinement. A built-in DSP is related to the detection/classification tasks for each acoustic module. A GPS module is used for time difference of arrival and module's position estimation. Wireless communication is supported using ZigBee technology. These acoustic modules are described in the article and first results of real-time asynchronous sniper localization using those modules are discussed.

Paper Details

Date Published: 8 November 2012
PDF: 11 pages
Proc. SPIE 8540, Unmanned/Unattended Sensors and Sensor Networks IX, 85400T (8 November 2012); doi: 10.1117/12.974578
Show Author Affiliations
S. Hengy, French-German Institute of Saint Louis (France)
S. De Mezzo, French-German Institute of Saint Louis (France)
P. Duffner, French-German Institute of Saint Louis (France)
P. Naz, French-German Institute of Saint Louis (France)

Published in SPIE Proceedings Vol. 8540:
Unmanned/Unattended Sensors and Sensor Networks IX
Edward M. Carapezza; Henry J. White, Editor(s)

© SPIE. Terms of Use
Back to Top