Share Email Print
cover

Proceedings Paper

Preliminary results of a lidar-dial integrated system for the automatic detection of atmospheric pollutants
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the last decades, atmospheric pollution in urban and industrial areas has become a major concern of both developed and developing countries. In this context, surveying relative large areas in an automatic way is an increasing common objective of public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective approach to monitor large portions of the atmosphere and, for example, they have been successful applied to the early detection of forest fire. The studies and preliminary results reported in this paper concern the development of an integrated Lidar-Dial system able to detect sudden releases in air of harmful and polluting substances. The propose approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement (by means of a low cost system). Once a significant increase in the density of a pollutant is revealed, the Dial technique is used to identify the released chemicals. In this paper, the specifications of the proposed station are discussed. The most stringent requirement is the need for a very compact system with a range of at least 600-700 m. Of course, the optical wavelengths must be in an absolute eye-safe range for humans. A conceptual design of the entire system is described and the most important characteristic of the main elements are provided. In particular the capability of the envisaged laser sources, Nd:YAG and CO2 lasers, to provide the necessary quality of the measurements is carefully assessed. Since the detection of dangerous substances must be performed in an automatic way, the monitoring station will be equipped with an adequate set of control and communication devices for independent autonomous operation. The results of the first preliminary tests illustrate the potential of the chosen approach.

Paper Details

Date Published: 1 November 2012
PDF: 9 pages
Proc. SPIE 8534, Remote Sensing of Clouds and the Atmosphere XVII; and Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VIII, 853404 (1 November 2012); doi: 10.1117/12.974537
Show Author Affiliations
P. Gaudio, Univ. degli Studi di Roma Tor Vergata (Italy)
M. Gelfusa, Univ. degli Studi di Roma Tor Vergata (Italy)
M. Richetta, Univ. degli Studi di Roma Tor Vergata (Italy)


Published in SPIE Proceedings Vol. 8534:
Remote Sensing of Clouds and the Atmosphere XVII; and Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VIII
Upendra N. Singh; Gelsomina Pappalardo; Evgueni I. Kassianov; Adolfo Comeron; Richard H. Picard; Klaus Schäfer, Editor(s)

© SPIE. Terms of Use
Back to Top