Share Email Print
cover

Proceedings Paper

Finite element analysis of lightweight active primary mirror
Author(s): Wei Xin Lu; Chun Lin Guan; Chang Hui Rao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

With the increasing requirement on spatial resolution to achieve ideal performance in space-based optical imaging system, there is a need to enlarge primary apertures. However, primary mirrors of such systems cannot maintain its optical tolerances across the mirror surface after sending to space, because of gravity change and varying ambient temperature. It necessitates active optics technology of primary mirror surface correction. Since mass-to-orbit is expensive and limited, lightweight primary mirror is needed. The paper investigates a lightweight, active primary mirror. This primary mirror structure includes lightweight face sheet and substrate with surface-parallel actuators embedded in the recess of web support ribs. Finite element models of lightweight, active primary mirror structures with different structural parameters are established and simulated. Using the response function matrixes acquired from finite element analysis, the fitting errors for Zernike polynomials are computed by MATLAB. Correctability comparisons of lightweight, active primary mirror structures with different parameters are carried out. To get best correctability, the mirrors should have small recess depth, high and thin ribs, thick face sheets and long actuators. The structural analysis result will be valuable for the design of lightweight, active primary mirror.

Paper Details

Date Published: 15 October 2012
PDF: 6 pages
Proc. SPIE 8415, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 84150R (15 October 2012); doi: 10.1117/12.971461
Show Author Affiliations
Wei Xin Lu, Institute of Optics and Electronics (China)
Key Lab. on Adaptive Optics (China)
Graduate School of the Chinese Academy of Sciences (China)
Chun Lin Guan, Institute of Optics and Electronics (China)
Key Lab. on Adaptive Optics (China)
Chang Hui Rao, Institute of Optics and Electronics (China)
Key Lab. on Adaptive Optics (China)


Published in SPIE Proceedings Vol. 8415:
6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes
Wenhan Jiang; Myung K. Cho; Fan Wu, Editor(s)

© SPIE. Terms of Use
Back to Top