Share Email Print
cover

Proceedings Paper

A novel design concept for space-based polar remote sensing
Author(s): Malcolm Macdonald; Pamela Anderson; Carl Warren
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Space-based remote sensing of the Earth is conducted from a fleet of spacecraft in two basic orbital positions, near-polar low-Earth orbits and geosynchronous orbits, with each offering its own advantages and disadvantages. Low-Earth orbits provide high-resolution observations at the expense of large-scale contextual information, while geosynchronous orbits provide near-global, continuous coverage at reduced resolutions. However, due to the rapidly decreasing horizontal resolution data-products derived from geosynchronous orbits are of degraded value beyond approximately 55 degrees of latitude. A novel mission design is introduced to enable continuous observation of all longitudes at latitudes between 55 and 90 degrees with an observation zenith angle of less than 60 degrees, without the use of composite images. A single Soyuz launch is used to deliver three spacecraft to 12-hr, highly eccentric true-polar orbits with apogee at 40170 km and electric propulsion is used to maintain the orbit apse-line coincident with the Earth’s poles. It is shown that the science payload mass can be traded against the mission duration, with a payload mass varying between 120 – 90 kg for mission durations between 3 – 5 years, respectively. It is further shown that the payload would have approximately of 2kW of power available during operations as the electric propulsion system is not operated at these times. Whilst the payload mass is less than a typical remote sensing platform in geosynchronous orbit it is considered that the concept would offer an excellent technology demonstrator mission for operational missions, whilst also enabling unique and valuable science.

Paper Details

Date Published: 19 November 2012
PDF: 12 pages
Proc. SPIE 8533, Sensors, Systems, and Next-Generation Satellites XVI, 85330Q (19 November 2012); doi: 10.1117/12.971437
Show Author Affiliations
Malcolm Macdonald, Univ. of Strathclyde (United Kingdom)
Pamela Anderson, Univ. of Strathclyde (United Kingdom)
Carl Warren, EADS Astrium Ltd. (United Kingdom)


Published in SPIE Proceedings Vol. 8533:
Sensors, Systems, and Next-Generation Satellites XVI
Roland Meynart; Steven P. Neeck; Haruhisa Shimoda, Editor(s)

© SPIE. Terms of Use
Back to Top