Share Email Print

Proceedings Paper

Structural Analysis Of Ethylene/Acrylic And Methacrylic Acid Copolymers Using Fourier Self-Deconvolution Of Infrared Spectra
Author(s): Matthew A. Harthcock
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Fourier self-deconvolution (FSD) has been applied to several regions of the infrared spectra of ethylene/acrylic and methacrylic acid copolymers to obtain detailed information on the structure of these copolymers. The computer assisted technique has been applied to the 1050-830 cm-1 region of the infrared spectrum of the copolymers to resolve the vinyl (909 cm-1) and vinylidene (887 cm-1) CH2 wagging vibrations from the in-phase out-of-plane hydrogen deformation vibration of the acid dimer (943 cm-1). The technique was applied to the carbonyl stretching vibration region (1820-1660 cm-1) to study the structure of the acid groups. Two distinct hydrogen bonded (1710 and 1696 cm-1) and free (1758 and 1745 cm-1) acid group structures were observed for the 9% acrylic acid copolymers, while the methacrylic acid copolymer showed predominantly one hydrogen bonded (1696 cm-1) and one free (1758 cm-1) acid group structure. Also, the 6.5% acrylic acid copolymers showed essentially one type of hydrogen bonded (1706 cm-1) carbonyl and two free carbonyl stretching absorptions (1758 and 1745 cm-1).

Paper Details

Date Published: 20 December 1985
PDF: 2 pages
Proc. SPIE 0553, Fourier and Computerized Infrared Spectroscopy, (20 December 1985); doi: 10.1117/12.970791
Show Author Affiliations
Matthew A. Harthcock, Dow Chemical U.S.A. (United States)

Published in SPIE Proceedings Vol. 0553:
Fourier and Computerized Infrared Spectroscopy
David G. Cameron; Jeannette G. Grasselli, Editor(s)

© SPIE. Terms of Use
Back to Top