Share Email Print

Proceedings Paper

A New All-Geometric Pose Estimation Algorithm Using A Single Perspective View
Author(s): T. Chandra; M. A. Abidi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Pose estimation is an important operation for many robotic tasks. In this paper, we propose a new algorithm of pose estimation. The input to this algorithm are the six distances joining all feature pairs and the image coordinates of the quadrangular target. The output of this algorithm are (1) the effective focal-length of the vision system, (2) the interior orientation parameters of the target, (3) the exterior orientation parameters of the camera with respect to an arbitrary coordinate system if the coordinates of the target are known in this frame, and (4) the final pose of the camera. The contribution of this method is the fast recovery of the vectors joining the effective focal-point and each of the target points using an all-geometric close form unique solution. Taking advantage of all the geometric information inherent in the target and its image, each of these vectors is recovered in six different ways. This redundancy is exploited in order to minimize the effect of random errors in the target sizing or in the recovery of its image coordinates. Knowing the relative position of the vision system frame with respect to a fixed coordinate system, the exterior orientation parameters are recovered in the form of a matrix transformation relating the fixed coordinate system to the target coordinate system. The decomposition of the latter matrix transformation into a translation and three rotations about the major axes provides the final pose of the camera.

Paper Details

Date Published: 1 March 1990
PDF: 14 pages
Proc. SPIE 1192, Intelligent Robots and Computer Vision VIII: Algorithms and Techniques, (1 March 1990); doi: 10.1117/12.969744
Show Author Affiliations
T. Chandra, University of Tennessee, Knoxville (United States)
M. A. Abidi, University of Tennessee, Knoxville (United States)

Published in SPIE Proceedings Vol. 1192:
Intelligent Robots and Computer Vision VIII: Algorithms and Techniques
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top