Share Email Print

Proceedings Paper

A Multiple Resolution Approach To Regularization
Author(s): Charles Bouman; Bede Liu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Regularization of optical flow estimates and the restoration of noisy images are examples of problems which may be solved by modeling the unknown field as a Markov random field (MRF) and calculating the maximum a posteriori (MAP) estimate. This paper presents a multiple resolution algorithm for maximizing the a posteriori probability associated with a class of MRF's. These MRF's combine the smooth regions found in Gaussian random fields with the abrupt boundaries characteristic of discrete valued MRF's. This makes them well suited for modeling image properties which vary smoothly over large regions but change abruptly at object boundaries. The multiple resolution algorithm first performs the maximization at coarse resolution and then proceeds to finer resolutions until the pixel level is reached. Since coarser resolution solutions are used to guide maximization at finer resolutions, the algorithm is resistant to local maxima and has performance equivalent to simulated annealing, but with dramatically reduced computation. In fact, the multiple resolution algorithm has been found to require less computation than local greedy algorithms because constraints propagate more rapidly at coarse resolutions. Regularization of optical flow problems and the restoration of fields corrupted with additive white Gaussian noise are explicitly treated and simulation results are presented.

Paper Details

Date Published: 25 October 1988
PDF: 9 pages
Proc. SPIE 1001, Visual Communications and Image Processing '88: Third in a Series, (25 October 1988); doi: 10.1117/12.968993
Show Author Affiliations
Charles Bouman, Princeton University (United States)
Bede Liu, Princeton University (United States)

Published in SPIE Proceedings Vol. 1001:
Visual Communications and Image Processing '88: Third in a Series
T. Russell Hsing, Editor(s)

© SPIE. Terms of Use
Back to Top