Share Email Print
cover

Proceedings Paper

Redundancy Technology With A Focused Ion Beam
Author(s): H. Komano; K. Hashimoto; T. Takigawa
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.

Paper Details

Date Published: 1 August 1989
PDF: 7 pages
Proc. SPIE 1089, Electron-Beam, X-Ray, and Ion-Beam Technology: Submicrometer Lithographies VIII, (1 August 1989); doi: 10.1117/12.968509
Show Author Affiliations
H. Komano, Toshiba Corp. (Japan)
K. Hashimoto, Toshiba Corp. (Japan)
T. Takigawa, Toshiba Corp. (Japan)


Published in SPIE Proceedings Vol. 1089:
Electron-Beam, X-Ray, and Ion-Beam Technology: Submicrometer Lithographies VIII
Arnold W. Yanof, Editor(s)

© SPIE. Terms of Use
Back to Top