Share Email Print
cover

Proceedings Paper

Design and performance of a low noise circuit for VLWIR HgCdTe photoconductive detectors
Author(s): HongHui Yuan; YongPing Chen; Shijun Chen; Qiang Liu; Xing Xu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Due to VLWIR (very long wavelength infrared) signals are often very weak, it is about 1uV, little disturb can affect the performance of the total detector system very much. In order to achieve high Signal-to-Noise ratio, it is expected that the circuit can be designed to work as close as to the HgCdTe IR detector. That is to say the circuit can work normally at low temperature 77K even more low. On the other hand, according to the characteristics of a Very Long Wavelength HgCdTe photoconductive detector, its resistance is about 25Ω~50Ω, CMOS circuit for this low resistance is very difficult. In this paper, A new kind of circuit for this low resistance detector is designed. The operation principle and noise of the circuit are analyzed. The noise model of the circuit is given. An expression for its equivalent input noise is derived. This circuit for long wave photoconductive detector was implemented in 0.5μm CMOS process. The size of twenty-cell chip is 3mm×4mm and its noise performance is tested. The test result indicate that this circuit can work normally at low temperature 77K, the equivalent input noise is less than 1uV. This circuit is suit to many kinds of low resistance detector. The voltage gain is more than 10000. The linearity has been reached 90%. Finally, it can work normally either by ±2 or by ±1.5 voltage power supply. The bandwidth is more than 5Khz.

Paper Details

Date Published: 15 October 2012
PDF: 7 pages
Proc. SPIE 8419, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, 84192O (15 October 2012); doi: 10.1117/12.968200
Show Author Affiliations
HongHui Yuan, Shanghai Institute of Technical Physics (China)
Graduate Univ. of Chinese Academy of Sciences (China)
YongPing Chen, Shanghai Institute of Technical Physics (China)
Shijun Chen, Shanghai Institute of Technical Physics (China)
Qiang Liu, Shanghai Institute of Technical Physics (China)
Xing Xu, Shanghai Institute of Technical Physics (China)


Published in SPIE Proceedings Vol. 8419:
6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy
Yadong Jiang; Junsheng Yu; Zhifeng Wang, Editor(s)

© SPIE. Terms of Use
Back to Top