Share Email Print
cover

Proceedings Paper

A Fibre-Optic Based System For Chemical In Vivo Mapping Of The Human Body
Author(s): B. Hougham; R. S. Brown; U. J. Krull
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In vivo chemical mapping of the human body could be very useful in the treatment of patients undergoing surgery such as heart surgery, with acute conditions such as hepatitis, or chronic conditions such as diabetes. Chemical mapping would be a continuous analytical profile of physical parameters such as blood pressure, chemical parameters such as pH, pCO2 and p02, simple molecules such as glucose and large biomolecules such as serum glutamate-oxoloacetate trans-aminase (SGOT), serum glutamate-pyruvate transaminase (SGPT) and billirubin. The advantage of a particular mapping strategy employing fibre-optic sensors is that all these different chemical signals arriving from different sensors can be multiplexed and detected concurrently. Although physical sensors for parameters such as temperature, pressure and blood viscosity have not yet found their way into routine use, those which employ fibre-optics do already exist. Fibre-optic chemical sensors (FOCS) have been developed for pH, pCO2, p02 and 3lucose (for review see Ref. 1). The existing FOCS utilize absorption, reflectance and fluorescence spectro-photometry. An integrated system for chemical mapping could utilize FOCS which exclusively use fluorescence probes which have a high signal to noise ratio and are sensitive to trace amounts of chemicals and biochemicals. One proposed strategy for detecting physiological analytes is the use of fluorescently labelled immunochemicals. These are useful in that the antibodies can be tailored to selectively bind almost any antigen conceivable (2) but are limited in that these reactions are mainly irreversible which is an important consideration for in vivo probes. A second strategy proposed is a receptor-based system (3). While agonist-receptor systems are slightly less selective than antigen-antibody systems, these reactions are reversible which is an important consideration for in vivo probes. Using existing FOCS and a new family of fluorescent chemical sensors that use evanescence, it is possible to multiplex different chemical sensors at different parts of the body to gain a more complete picture of the patient.

Paper Details

Date Published: 1 January 1987
PDF: 2 pages
Proc. SPIE 0813, Optics and the Information Age, (1 January 1987); doi: 10.1117/12.967221
Show Author Affiliations
B. Hougham, University of Toronto (Canada)
R. S. Brown, University of Toronto (Canada)
U. J. Krull, University of Toronto (Canada)


Published in SPIE Proceedings Vol. 0813:
Optics and the Information Age

© SPIE. Terms of Use
Back to Top