Share Email Print

Proceedings Paper

An Optical Inversion Technique To Remotely Sense Atmospheric Turbulence Spectra, Cri Profiles And Cross-Wind Velocity
Author(s): Robert M. Manning
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A remote sensing technique is theoretically developed whereby the temporal frequency spectrum of the scintillations of a stellar source or a point source within the atmosphere, observed through a variable radius aperture, is related to the space-time spectrum of atmospheric scintillation. The key to this spectral remote sensing method is the spatial filtering performed by a finite aperture. The entire method is developed without resorting to a priori information such as results from stochastic wave propagation theory. Having obtained the space-time spectrum of scintillations, an application of known results of atmospheric wave propagation theory and simple geometric considerations are shown to yield information such as the spectrum of atmospheric turbulence, the path averaged cross-wind velocity, and the path profile of the atmospheric refractive index structure parameter. The success of this proposed remote sensing method relies on the solution to a Fredholm integral equation of the first kind. A solution is obtained and a proof is given demonstrating the well-posedness (in the sense of Hadamard) of this inverse problem.

Paper Details

Date Published: 7 July 1986
PDF: 16 pages
Proc. SPIE 0644, Remote Sensing, (7 July 1986); doi: 10.1117/12.964448
Show Author Affiliations
Robert M. Manning, ANALEX Corporation (United States)

Published in SPIE Proceedings Vol. 0644:
Remote Sensing
Robert T. Menzies, Editor(s)

© SPIE. Terms of Use
Back to Top